首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 875 毫秒
1.
采用不同的偶联剂KH550、KH560、KH570和KH8431对纳米SiO2进行表面改性,采用熔融共混法将未改性和改性纳米SiO2(5%(质量分数)SiO2)与EVOH共混制成复合材料,并吹塑成薄膜。利用FT-IR、TEM、SEM对不同偶联剂处理的纳米SiO2和复合材料的结构进行表征,并对复合材料的流变性能、阻隔性能、力学性能、耐热性能和透明性进行了表征。结果表明,纳米SiO2与4种偶联剂均形成化学键合,改性纳米SiO2比未改性纳米SiO2在EVOH中分散性好,加工时熔体的流动性更好。用KH550处理的纳米SiO2在EVOH中分散性最好,与EVOH能形成较大界面相互作用力,与EVOH/未改性纳米SiO2复合材料相比,EVOH/改性纳米SiO2复合材料的拉伸强度和储能模量分别提高17.2%和136%,透湿、透氧系数分别下降11.2%和9.5%,透光率达到74.9%,雾度为14.9%。  相似文献   

2.
用硅烷偶联剂y-氨丙基三乙氧基硅烷(KH550)对纳米SiO2进行改性,采用熔融共混法制备了合SiO2的质量分数为5%的乙烯-乙烯醇共聚物(EVOH)/纳米SiO2复合材料,并吹塑成薄膜,将复合膜进行不同时间、不同强度的紫外辐照处理。利用FTIR、TEM、SEM对纳米SiO2和复合材料进行了表征分析,测试了复合材料紫外辐照处理前后的阻隔性能和力学性能。结果表明:纳米SiO2与偶联剂KH550形成化学键合,经紫外辐照处理的EVOH/纳米SiO2复合膜的力学性能、阻隔性能得到了较大地提高。  相似文献   

3.
为提高纳米SiO2在硅橡胶(SR)基体中的分散性及两相间的界面结合力,设计以羟基硅油(HSO)和γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)为纳米SiO2的表面封端改性剂,并将改性SiO2与双组份加成型液体SR复合得到改性纳米SiO2/SR复合材料。通过一系列表征手段对改性纳米SiO2的形貌结构及其在乙醇中的分散性等进行分析,研究了改性纳米SiO2对纳米SiO2/SR复合材料的断面形貌、力学性能及热稳定性的影响。结果表明:KH570成功接枝到纳米SiO2表面并与SR基体间形成化学键。当HSO协同KH570改性纳米SiO2时,可有效改善纳米SiO2在SR基体中的分散性能及纳米SiO2与SR两相间的界面结合性能,并显著提高纳米SiO2/SR复合材料的力学性能和热稳定性。将SiO2∶HSO∶KH570以质量比为2.0∶0.2∶0.6处理的改性纳米SiO2粒子,得到的改性纳米SiO2/SR复合材料起始热分解温度提高了230℃。当SiO2∶HSO∶KH570质量比为2.0∶0.2∶0.45时,改性纳米SiO2/SR复合材料的拉伸强度和断裂伸长率分别提高了约1倍。   相似文献   

4.
刘跃军  潘秀梅  刘亦武  谭井华 《功能材料》2012,43(22):3108-3113
选取3种偶联剂(KH550、KH560和KH570),将纳米SiO2进行改性,并采用熔融共混法分别与4种结晶性能不同的聚合物(HDPE、PP、PVC和PC)共混制备了一系列纳米复合材料(0~5%(质量分数)SiO2),并吹塑成薄膜。采用红外光谱(IR)、差示扫描量热仪(DSC)及扫描电镜(SEM)对纳米SiO2和复合材料的结构进行了表征,并对复合材料的力学性能、阻隔性能等进行了表征。结果表明,纳米SiO2与偶联剂均形成化学键合,改性后的纳米SiO2在各聚合物中分散较好,且在聚合物中起到异相成核的作用。在相同纳米SiO2含量下,SiO2对结晶性能不同的聚合物的结晶改善情况有差异,且纳米SiO2的异相成核作用在结晶性聚合物中更为明显,能使复合材料的结晶更为完善,结晶性能的改变与复合材料的阻隔性能能够形成一定关系。  相似文献   

5.
表面修饰纳米SiO2的抗磨减磨性能研究   总被引:1,自引:0,他引:1  
以γ-甲基丙烯酰氧基丙基三甲氧基硅烷(硅烷偶联剂KH570)为改性剂,对纳米SiO2进行表面改性,并利用紫外可见分光光度计测定其在油中的稳定性,用四球试验和止推圈试验考察改性后纳米SiO2的抗磨减磨性能,结果表明,用KH570改性后的纳米SiO2在20#润滑油中有很好的分散稳定性,将其添加到润滑油中进行摩擦磨损实验,证明,摩擦系数最多可降低约45%,磨损量明显减少,并出现负磨损现象。其作为润滑油添加剂能有效提高油品的抗磨减磨性能。  相似文献   

6.
在木质素-苯酚-淀粉树脂(LPSR)中加入硅烷偶联剂KH-570表面改性处理过的纳米SiO_2粒子,共同制备KH570-gSiO_2/LPSR树脂复合材料。通过红外光谱仪可确定KH570-g-SiO_2/LPSR树脂中含有二氧化硅组分。实验数据表明当纳米SiO_2质量分数为6%时,KH570-g-SiO_2/LPSR树脂复合材料的各项性能较为优异。其软化点、凝胶时间分别为100.9℃,78 s,在冷态(室温)、热态(260℃)拉伸强度较LPSR树脂分别提高了13.0%,3.7%,冷态、热态弯曲强度分别提高了5.5%,8.1%。由热失重分析发现纳米SiO_2的加入提高了树脂复合材料的耐热性能及热稳定性。  相似文献   

7.
本文选择了三种经不同表面改性处理的纳米二氧化硅,采用热分析(TG)对聚乙烯/改性纳米SiO2复合材料的热稳定性能进行了研究,并将其用于无卤阻燃聚乙烯体系,针对改性纳米SiO2对无卤阻燃聚乙烯的阻燃性能和力学性能的影响进行了分析。研究结果表明,与未改性纳米二氧化硅相比,经改性处理的纳米SiO2有利于提高复合材料的热稳定性能,延缓聚乙烯的热氧化降解,经适当改性处理,可使纳米复合材料的热稳定性高于聚乙烯。改性纳米SiO2显著提高了无卤阻燃聚乙烯的阻燃性能,在填料用量相同时,可获得力学性能和阻燃性能较佳的材料。  相似文献   

8.
硅烷偶联剂对纳米二氧化钛表面改性的研究   总被引:40,自引:0,他引:40  
利用硅烷偶联剂(KH-570)对表面包覆氧化硅的金红石相纳米TiO2进行了有机表面改性.采用红外光谱(IR)、X射线光电子能谱(XPS)、热分析(TG-DTA)、透射电镜(TEM)和润湿性实验等分析手段对表面改性前后的纳米TiO2进行了表征.红外光谱和X射线光电子能谱表明,KH-570以化学键合的方式结合在纳米TiO2的表面,并形成了有机包覆层.经测量,纳米TiO2表面包覆的KH-570的质量分数约为7.42%-8.59%.润湿性实验显示,经KH-570表面改性的纳米TiO2具有疏水性.力学性能实验表明,经KH-570表面改性的纳米TiO2能同时提高复合材料的强度和韧性.  相似文献   

9.
PBS/MMT纳米复合材料的制备及表征   总被引:1,自引:0,他引:1  
以聚丁二酸丁二醇酯(PBS)为基材,经十六烷基三甲基溴化铵(CTAB)改性过的纳米蒙脱土为填料,采用熔融共混法,制备了PBS/MMT纳米复合材料,并研究了该复合材料的热稳定性能、力学性能和流变性能等。结果表明:当改性nano-MMT的添加质量分数为5%时,复合材料的熔点约提高了2.55℃,热初始分解温度提高了33℃;当其添加质量分数为3%时,复合材料的拉伸强度提高了9%,断裂伸长率提高了3%,冲击强度提高了23%;复合材料的流变性能比纯PBS的流变性能有一定程度的提高。  相似文献   

10.
硅烷偶联剂KH-570对纳米二氧化硅的表面改性研究   总被引:9,自引:0,他引:9  
为改善用作农药载体的纳米SiO2的分散性和疏水性,以硅烷偶联剂KH-570对纳米SiO2进行了表面改性,通过SEM、XRD、FTIR以及元素分析等表征方法对产物结构和性能进行了分析,结果表明,KH-570能够成功地对纳米SiO2进行改性,并且提高其分散性。最佳偶联改性的反应条件为:改性剂用量5%,改性时间5h。在此条件下,改性纳米SiO2的接枝率为11.7%。  相似文献   

11.
硅烷偶联剂KH550和KH570在乙醇溶剂中以酸水溶液为.催化剂进行水解后时硅灰石粉末进行湿法表面修饰改性。用称重法测定了粉体表面偶联包覆率,以此为指标确定了适宜的水解条件以及反应时间,对偶联效果进行了评价。用溶剂共沉淀法及热压工艺制备了聚乳酸/硅灰石(PDLLA/wollastonite)复合材料。经红外光谱(IR)分析,硅烷偶联剂与硅灰石表面发生化学键合,从而实现表面修饰改性。通过透射电镜(TEM)以及扫描电子显微镜(SEM)分析发现改性硅灰石粒子在有机相中的分散性和稳定性均得到了改善。对改性前后的复合物材料的力学性能进行了测试,结果表明,对硅灰石进行表面改性后,力学性能均得到一定提高,拉伸强度大约提高了5%,弯曲强度大约提高了10%。  相似文献   

12.
以硅烷偶联剂3-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)对纳米二氧化硅(SiO2)进行表面处理,通过分散聚合工艺分别制得SiO2-g-KH570-g-PS、SiO2-g-KH570-g-PMMA和SiO2-g-KH570-g-PAN,采用熔融共混法制备了乙烯-乙烯醇共聚物(EVOH)/纳米SiO2复合材料(5%(...  相似文献   

13.
宋志勇  李乃状  张蕾  李洁 《包装工程》2020,41(15):142-148
目的研究改性二氧化硅对聚乳酸力学性能、氧气透过性能和水蒸气透过性能的影响。方法选择粒径为50nm的工业级二氧化硅为添加剂,使用KH570硅烷偶联剂对其进行改性,然后通过溶液浇铸法将改性后的二氧化硅与聚乳酸共混制备成膜。测试分析拉伸性能、透氧性能和透水蒸气性能,表征复合膜的力学性和阻隔性能。结果与纯PLA膜相比,改性复合膜的拉伸强度和弹性模量分别提高了18.65%和19.91%;玻璃化转变温度比纯PLA膜高11℃左右,热稳定性得到增强。与纯PLA膜相比,改性复合膜的氧气透过系数和水蒸气透过系数分别降低了29.89%和43.76%,阻隔性明显提高。结论经KH570硅烷偶联剂改性的二氧化硅对聚乳酸材料性能的增强效果更佳,为聚乳酸材料在包装领域的应用提供了依据。  相似文献   

14.
以纳米SiO2(Nano-SiO2)、γ-甲基丙烯酰氧乙基三甲氧基硅烷(KH570)、全氟烷基乙基丙烯酸酯(FM))等为主要原料,通过KH570改性纳米SiO2后,与FM等乙烯基单体共聚,制得了既含氟又含硅的丙烯酸酯有机/无机杂化无皂乳液。通过FT-IR、AFM及接触角测量等手段研究了共聚物的结构及性能。结果表明,氟硅单体均参与了共聚反应;乳胶膜耐热稳定性及残炭率均得以提高;加入SiO2后,涂膜凸起峰的高度和致密程度提高;当w(FM)=30%,w(SiO2)=0.5%时,涂膜对水及液体石蜡的接触角分别为125°及110°;激光粒度分布仪(DLS)分析表明,乳液平均粒径为98.37 nm。  相似文献   

15.
为进一步改善聚丁二酸丁二醇酯(PBS)的力学性能和耐热性能,采用硅烷偶联剂KH550改性微米六方氮化硼(h-BN),对PBS进行共混改性,通过熔融共混与开炼压延工艺制备了具有较高耐热性的h-BN-KH550/PBS复合膜。对h-BN-KH550粒子结构和复合膜的力学性能、聚集态结构、断面形貌、结晶性能及热稳定性进行了测试和表征。结果表明:与PBS相比,h-BN-KH550/PBS复合膜的力学性能得到改善,当KH550与h-BN质量比为2∶50、h-BN-KH550与PBS质量比为3∶50时,综合力学性能最优;h-BN-KH550粒子可在PBS中均匀分散;在PBS结晶过程中,h-BN-KH550作为成核剂,使PBS的结晶速率加快,结晶度增大;h-BN-KH550/PBS复合膜的热稳定性显著提高,当h-BN-KH550与PBS质量比为3∶50时,复合膜热分解过程中质量损失为5%、10%、50%时的温度(T5d、T10d、T50d)和热分解峰值温度(Tp)分别提高了30.0、22.6、9.5和10.0℃。  相似文献   

16.
新型硅橡胶基压阻敏感复合材料制备及其性能研究   总被引:2,自引:0,他引:2  
张晶  只欣  党智敏 《功能材料》2011,42(6):1115-1118
以多壁碳纳米管(MWNT)和纳米二氧化硅作为助填料,采用三辊研磨机制备了(MWNT-SiO2)/RTV复合材料,研究其压阻和介电性能.结果表明,纳米SiO2经KH570改性,其在基体中分散性及界面结合提高;(MWNT-SiO2)/RTV复合材料压力敏感性增强,当外界压力为150N时,含5%二氧化硅的复合材料相对电阻是M...  相似文献   

17.
采用胶乳共混法制备天然橡胶/二氧化硅(NR/SiO2)纳米复合材料。先用硅烷偶联剂KH-570对纳米二氧化硅进行改性,再经乳液聚合接枝上聚甲基丙烯酸甲酯(PMMA)得到PMMA-SiO2粒子,最后将其与用MMA改性的天然胶乳(NR-PMMA)共混制得NR/SiO2纳米复合材料。采用红外光谱仪、透射电镜、扫描电镜、热重分析仪、橡胶拉伸测试机对样品进行了表征。实验结果表明,PMMA成功地接枝于SiO2表面,PMMA-SiO2在橡胶基体中分散均匀,平均粒径在60nm~80nm之间,复合材料的拉伸强度比纯的NR提高了35%,定伸应力也有显著提高。  相似文献   

18.
硅烷偶联剂KH550、KH560、KH570处理的多层塑料复合板废料(WGFRP)与增容剂并用后,通过与聚丙烯(PP)熔融共混,制备了PP/WGFRP/相容剂复合材料。采用热重分析(TGA)、扫描电子显微镜(SEM)和力学性能测定,研究了复合材料的结构与性能。结果表明,当用质量分数1%的硅烷偶联剂KH570处理的WGFRP(100 mesh)为20份,相容剂为2份时,复合材料的冲击强度比纯PP提高约113%,拉伸强度变化不大。SEM观察到PP/WGFRP/相容剂复合材料在断裂过程中发生塑性变形,其韧性较好。TGA结果表明,随着WGFRP用量的增加,复合材料的热稳定性提高。  相似文献   

19.
采用不同的偶联剂KH550、KH560和KH570对纳米SiO2进行表面处理,然后将其与拼混树脂制成复合材料。利用TEM、FT-IR和TGA等分析测试手段对不同偶联剂处理的纳米SiO2进行表征和分析,同时对复合材料的显微形貌及耐热性能进行一定的考察。结果表明,SiO2与三种偶联剂均形成化学键合。相比之下,用KH560处理的SiO2在基体树脂中分散性较好,复合材料耐热性较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号