首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
磁驱动旋转电弧运动图像及弧电压脉动的实验研究   总被引:1,自引:0,他引:1  
杜百合  黎林村  马强  陈佺  赵宇含  夏维东 《核技术》2005,28(10):745-750
磁驱动旋转电弧产生扩散电弧等离子体过程中有许多有趣的物理现象。本文利用高速摄影技术研究了大气压条件下、非均匀磁场中、大尺度磁驱动旋转氩电弧的电弧结构;在一定的弧电流和外磁场条件下,电弧的平面形状表现为不断发展和增长的螺旋结构,电弧螺旋结构的破裂往往产生于阴极附近的等离子体射流。采用图像分析的方法计算了外部磁场作用下阳极斑点沿弧室内壁的移动频率,分析了磁驱动旋转电弧运动过程中的弧电压脉动现象。结合电弧图像分析和电弧电压脉动及其FFT分析得出:电弧电压的大幅波动与多层电弧螺旋结构破裂和重建相关,而电弧电压的小幅波动则是弧根小幅跳动引起电弧拉长和收缩的结果。  相似文献   

2.
真空弧离子源脉冲工作瞬间的放电行为   总被引:1,自引:0,他引:1  
采用高速摄影和光谱诊断的方法研究了真空弧离子源脉冲工作瞬间的放电行为。拍摄了离子源放电瞬间吸氢电极上阴极斑的形成过程,分析了不同放电电流时阴极斑的发射光谱。实验结果表明,当脉冲工作电流为10^1—10^2A时,真空弧离子源放电区一般只有单个阴极斑,阴极斑的位置在同一次放电中的变化很小;较大的脉冲工作电流有利于提高阴极斑的温度,并最终导致氢离子浓度的增加,但也会使阴极材料的溅射更加严重,造成离子源等离子体品质下降。  相似文献   

3.
程亮  俞民  陈佺  赵宇含  夏维东 《核技术》2007,30(10):872-875
介绍了一种用于煤粉点火等离子体发生器的实验装置,由一对并联的条形平行布置的阳极和同平面布置的圆柱形阴极构成,它们设置在煤粉输运通道中。采用高速CCD摄像和电弧电气参数测量等方法,研究了电弧形状、弧根的运动规律等。试验结果表明:(1)阳极弧根沿电极轴向无规则快速跳动及在两条电极间交替跳跃,这种弧根的快速跳跃有利于降低阳极损耗;(2)电弧在两条阳极之间的弧室内呈现不规则快速变化扭曲形状,使电弧弥漫于整个弧室,煤粉通过电弧放电通道高温区时与电弧混合而点火,使等离子体点火效率有了显著提高。  相似文献   

4.
王广甫  张荟星 《核技术》2004,27(6):440-443
研究了阴极弧等离子体沉积中第二阳极现象改善弧放电稳定性的作用。结果表明:由于弧放电规模增大,等离子体电阻降低,第二阳极现象的存在可大幅度提高造成阴极弧放电不稳定的聚焦磁场阈值。  相似文献   

5.
王广甫  张荟星 《核技术》2001,24(10):842-847
利用一台磁过滤真空弧沉积装置,初步研究了磁过滤管道对系统弧放电的影响。实验证明,磁过滤管道在阴极真空弧沉积中不仅起到消除大颗粒的作用,还作为阴极真空弧放电的第二阳极对弧放电产生影响。给出了磁过滤阴极真空弧放电的等效电路,并用此电路对磁过滤阴极真空弧放电中的部分实验现象进行了解释。  相似文献   

6.
在90°磁过滤管道和MEVVA源阴极之间加30~60V的正偏压可使磁过滤管道起到阴极弧放电第二阳极的作用.在此情况下,就磁过滤管道磁场对MEVVA源阳极-阴极和磁过滤管道-阴极两个回路弧放电和磁过滤管道等离子体传输效率的影响进行了实验研究.研究结果表明随磁过滤磁场升高,磁过滤管道和阴极之间的弧放电规模降低,系统的等离子体传输效率升高,但对MEVVA源阳极和阴极之间的弧放电规模影响不大.  相似文献   

7.
罗杰  何煜 《核技术》1999,22(8):488-493
主要研究直流等离子体炬的数值模拟方法,通过求解等离子体弧社区域的能量守恒,动量守恒,质量守恒及电流连续性方程,得到不同边界条件下温度,速度,电流密度分布,计算了大气压下200A自由氩弧的温度分布,电势和电流分布,并与实验数据及现有的理论计算进行了比较,得到了较好的结果,在此基础上结合本实验室5000A大功率等离子体炬,讨论了有阴极喷口存在下的弧柱部分的数值计算,以及能量守恒方程中辐射项,焦耳热项的  相似文献   

8.
为了改进阴极真空弧等离子体通过磁过滤弯管的传输效率,测定了磁过滤弯管出口离子电流与阴极弧流的关系,结果表明:磁过滤弯管内表面中,靠近大径中心一侧的表面(内侧面)和远离大径中心一侧的表面(外侧面)与等离子体的相互作用是独立的,存在两种向磁过滤弯等内表面运动的离子流:离子碰撞导致的横向扩散离子流和从阴极弧出来的较高能量的惯性离子流。两种离子流通过磁过滤管的传输过程有不同的机制。整个磁过滤弯管偏压较仅仅Bilek板偏压有更高的离子传输效率,Bilek板偏压对磁过滤弯管离子传输起主要作用。  相似文献   

9.
用于材料表面强化处理的第三代多功能PⅢ装置   总被引:6,自引:0,他引:6  
第三代多功能等离子体浸没离子注入(PⅢ)装置的强流脉冲阴极弧金属等离子体源既具有强的镀膜功能,同时也具有强的金属离子注入功能;它的脉冲高压电源能输出大的电流;并可获得高的注入剂量均匀性。该装置既能执行离子注入,又能把离子注入与溅射沉积,镀膜结合在一起,形成多种综合笥表面改性工艺。本文描述了它的主要设计原则、主要部件的特性以及近期的研究工作成果。  相似文献   

10.
磁过滤等离子体沉积和注入技术   总被引:1,自引:0,他引:1  
张荟星  李强  吴先映 《核技术》2002,25(9):695-698
利用阴极真空弧放电技术能够产生高密度的金属等离子体。经过90度的磁过滤器,可以除去金属等离子体中的大颗粒微粒,从而为制备高质量的、致密的各种薄膜提供了一种全新的技术。利用该技术制备薄膜具有非常广泛的应用。本文介绍了阴极真空弧放电技术的应用,以及磁过滤等离子体沉积和注入装置及其应用。  相似文献   

11.
Secondary arc discharge is a complicated physical phenomenon and one of the key fundamental issues associated with ultra high voltage (UHV) half-wavelength transmission lines (HWTL). With the establishment of a physicM simulation platform for the HWTLs, experiments were carried out regarding the motion and extinction characteristics of secondary arcs. The cathode arc root and the anode arc root were found to show an obvious polarity effect while the arc column was moving in a spirM, due to their different motion mechanisms. The extinction behavior was also recorded and experiments were designed with different compensation conditions. Results show that the arcing time can be greatly reduced if there exists an electrical compensation network. The research provides fundamentals for understanding the physics involved, especially the motion and extinction mechanisms of the secondary arcs.  相似文献   

12.
A model coupling the plasma with a cathode body is applied in the simulation of the diffuse state of a magnetically rotating arc.Four parametric studies are performed:on the external axial magnetic field (AMF),on the cathode shape,on the total current and on the inlet gas velocity.The numerical results show that:the cathode attachment focuses in the center of the cathode tip with zero AMF and gradually shifts off the axis with the increase of AMF;a larger cathode conical angle corresponds to a cathode arc attachment farther away off axis;the maximum values of plasma temperature increase with the total current;the plasma column in front of the cathode tip expands more severely in the axial direction,with a higher inlet speed;the cathode arc attachment shrinks towards the tip as the inlet speed increases.The various results are supposed to be explained by the joint effect of coupled cathode surface heating and plasma rotating flow.  相似文献   

13.
A two-wavelength pyrometry device using ordinary array CCD (charge coupled device) to collect the radiation data in the horizontal and vertical directions has been developed for measuring the cathode surface temperature during the arc discharge. Analyses of experimental results show that the device can make the measurement of the cathode surface temperature feasible. The cathode surface temperatures measured are lower than the melting point of tungsten (3653 K), and the arc current, cathode diameter, and the cathode length are the main influencing factors of the cathode surface temperature.  相似文献   

14.
Results observed experimentally are presented, about the DC arc plasma jets and their arc-root behaviour generated at reduced gas pressure without or with an applied magnetic field. Pure argon, argon-hydrogen or argon-nitrogen mixture was used as the plasma-forming gas. A specially designed copper mirror was used for a better observation of the arc-root behaviour on the anode surface of the DC non-transferred arc plasma torch. It was found that in the cases without an applied magnetic field, the laminar plasma jets were stable and approximately axisymmetrical. The arc-root attachment on the anode surface was completely diffusive when argon was used as the plasma-forming gas, while the arc-root attachment often became constrictive when hydrogen or nitrogen was added into the argon. As an external magnetic field was applied, the arc root tended to rotate along the anode surface of the non-transferred arc plasma torch.  相似文献   

15.
The self-excited DC air circuit breaker (SE-DCCB) has been widely used in urban rail transit due to its excellent stability. It can realize forward and reverse interruption, but has difficulty interrupting small currents due to the phenomenon of arc root sticking at the entrance of the arc chamber in the splitting process, which is known as arc root stagnation. A coupling model of the self-excited magnetic field and magnetohydrodynamics is established for the SE-DCCB with the traditional structure. The magnetic field, temperature and airflow distribution in the arc chamber are investigated with an interrupting current of 150 A. The simulation results show that the direction and magnitude of the magnetic blowout force are the dominant factors in the arc root stagnation. The local high temperature of the arc chamber due to arc root stagnation increases the obstruction effect of the airflow vortex on the arc root movement, which significantly increases the arc duration time of small current interruption. Based on the research, the structure of the magnetic conductance plate of the actual product is improved, which can improve the direction and magnitude of the magnetic blowout force at the arc root so as to restrain the development of the airflow vortex effectively and solve the problem of arc root stagnation when the small current is interrupted. The simulation results show that the circuit breaker with improved structure has a better performance for a small current interruption range from 100 A to 350 A.  相似文献   

16.
In this paper, a three-dimensional non-equilibrium steady arc model is used to investigate the temperature, velocity and electromagnetic field in multi-cathode arc torch, and the formation mechanism of a large-area, uniform and diffused arc plasma is analyzed. The numerical simulation results show that a large volume plasma region can be formed in the central region of the generator during discharge. During this process, the maximum electron temperature appears near the cathode and in the central convergence region, while the maximum heavy particle temperature only appears in the central convergence region. This phenomenon is consistent with the experimental arc images. Near the cathode tip, the arc column is in a contraction state. In the area slightly away from the cathode, the six arc columns begin to join together. In the plasma generator, there is a large-scale current distribution in all directions of X, Y and Z, forming a stable arc plasma with a wide range of diffusion. The calculated electron temperature distribution is in good agreement with the measured electron temperature. The results suggest that the largearea diffused arc plasma in the multi-cathode arc torch is the combined effect of current distribution, convection heat transfer and heat conduction.  相似文献   

17.
This paper focuses on the simulation of the low-voltage arc with an opening contact. A controllable experiment setup with a rotating contact is designed to investigate the arc behaviour. Supported by the experiment, the phenomena of arc elongation and commutation in the case of rotating contact are simulated with the dynamic grid technique introduced. Under the given condition of the external magnetic field and the contact rotating velocity, the stagnation and rapid jump of two arc roots are observed by the calculated and experimental arc root displacement. The voltage of arc column can be divided into four phases and its sharp rising progress comes from the increase of the displacement difference between two arc roots in x direction.  相似文献   

18.
As the main source of the vacuum arc plasma, cathode spots (CSs) play an important role on the behaviors of the vacuum arc. Their characteristics are affected by many factors, especially by the magnetic field. In this paper, the characteristics of the plasma jet from a single CS in vacuum arc under external axial magnetic field (AMF) are studied. A multi-species magneto-hydro-dynamic (MHD) model is established to describe the vacuum arc. The anode temperature is calculated by the anode activity model based on the energy flux obtained from the MHD model. The simulation results indicate that the external AMF has a significant effect on the characteristic of the plasma jet. When the external AMF is high enough, a bright spot appears on the anode surface. This is because with a higher AMF, the contraction of the diffused arc becomes more obvious, leading to a higher energy flux to the anode and thus a higher anode temperature. Then more secondary plasma can be generated near the anode, and the brightness of the ‘anode spot’ increases. During this process, the arc appearance gradually changes from a cone to a dumbbell shape. In this condition, the arc is in the diffuse mode. The appearance of the plasma jet calculated in the model is consistent with the experimental results.  相似文献   

19.
A hot cathode bucket ion source is used for the EAST(experimental advanced superconducting tokamak)neutral beam injector.The thermal electrons emitted from the surface of the cathode are extracted and accelerated by the electric field formed by the arc voltage,which is applied between the arc chamber of the ion source and the cathode.This paper analyzes the effects of arc voltage on the arc discharge in a hot cathode high current ion source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号