首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermo-oxidative degradation of the blends of polypropylene (PP) with metallocene linear low density polyethylene (mLLDPE), has been examined. The samples were exposed in the air-oven for a period of 120 days at 150°C. Scanning Electron Microscopy (SEM) and Light Microscopy (LM) were used for the study of morphology and the measurement of impact properties, to assess the embrittlement of the blend systems. In case of PP, surface cracks appeared spontaneously after 30 days of thermal aging. However, it has been observed that thermal stability of PP has significantly improved by blending it with mLLDPE even after 120 days of thermal aging. Similarly impact strength of PP has shown deterioration after 30 days while there is not much reduction in impact strength in case of PP/mLLDPE blends. The presence of stabilizer in both materials has not shown much difference in impact strength and morphology. Therefore the stabilizer ratio can be optimized vis-à-vis appropriate PP/mLLDPE blend composition.  相似文献   

2.
Large enhancements of the melt strength of polypropylene (PP) were achieved by the introduction of specific unsaturated linear polyester (ULP) branches using melt grafting. The transient torque curves and optical rheology microscope images indicated that branching reactions took place and the ULP had been grafted onto the PP backbone. Shear rheological behaviors of three kinds of PP were investigated using rotational rheometer under dynamic shear mode with periodic shear rate. These PP samples are foamable PP (FPP) with sparse branches obtained by grafting ULP, commercial high melt strength PP (HMS PP) for foaming and conventional linear PP (EPS). It was found that the rheological properties of FPP, the HMS PP, were distinctly different from those of conventional PP. Storage modulus, steady state compliance and zero shear viscosity increased in comparison with EPS, while shear viscosity decreased. This result implied the presence of branching structures that was not revealed in conventional PP. In melt flow measurements, extrusion swell that was a prominent behavior of branching PP was observed also for FPP and PF. Compared to linear PP, FPP and PF showed distinct sag-resistant property and lower melt flow index. On the other hand, to estimate the extent of branching, a detailed method was applied using the obtained zero shear viscosity. The result showed that FPP was grafted by sparse ULP. From these results, it was found that FPP showed obvious enhancements in rheological behaviors similar to PF, although its melt strength was lower than that of PF due to the presence of shorter branching chains grafted on the backbone of FPP.  相似文献   

3.
mLLDPE与LDPE共混改善mLLDPE加工性能的研究   总被引:6,自引:0,他引:6  
主要进行了茂金属线性低密度聚乙烯(mLLDPE)与低密度聚乙烯(LDPE)共混改善mLLDPE的加工性能的研究。通过实验验证了mLLDPE与LDPE共混可以降低mLLDPE的表观粘度,提高剪切敏感性;提高临界剪切速率,防止熔体破裂;增大熔体流动速率,改善流动性能;增大熔体强度,促进膜泡的稳定性,降低膜泡破裂的可能性。另外,还验证了通过迅速冷却膜泡可以提高熔体强度,从而提出了采用膜泡的内部冷却方式更适合mLLDPE的加工。  相似文献   

4.
Study of melt rheological properties of the blends of polypropylene (PP) with styrene–ethylene butylene–styrene block copolymer (SEBS), at blending ratios 5–20% SEBS, is reported. Results illustrate the effects of (i) blend composition and (ii) shear rate or shear stress on melt viscosity and melt elasticity and the extrudate distortion. In general, blending of PP with SEBS results in a decrease of its melt viscosity, processing temperatures, and the tendency of extrudate distortion. However, the properties depend on blending ratio. A blending ratio around 5–10% SEBS seems optimum from the point of view of desirable improvement in processability behavior.  相似文献   

5.
In this article, the ultrasonic degradation of polypropylene (PP) melt was conducted in a specially designed reactor. Dynamic stress rheometer and gel permeation chromatography (GPC) were used to study the degradation behavior of PP melt. Thermal properties of ultrasonically treated PP were further discussed. The results showed the decrease of complex viscosity, zero shear viscosity, representative relaxation time, viscoelastic moduli as well as cross-over modulus, but an increase of cross-over frequency with introduction of ultrasonic irradiation, due to reduction of weight average molecular weight and increase of molecular weight distribution index of the polymer. The ultrasonic chain scissions of PP melt mainly occurred at the initial 3 min of irradiation and subsequently tended to terminate under our experimental conditions. In addition, the crystallization temperature and melting temperature of PP together got decreased in the presence of ultrasonic irradiation due to the occurrence of lower molecular weight components and some chemical irregularities in PP chain, along with the slight increase of crystallinity.  相似文献   

6.
Melt rheological properties of the blend of isotactic polypropylene (PP) and ethylene propylene diene rubber (EPDM) at varying ratios and of the glass fiber (GF) filled PP and PP/EPDM blend by varying both GF loading and blending ratio of the polyblend matrix are studied. Rheological measurements at 220°C in shear rate range 101?104s?1 were made on a capillary rheometer. Scanning electron micrographs of the extrudates are presented to show the morphology and the alignment of the glass fibers with respect to the flow direction. Variations of pseudoplasticity index, melt viscosity, and melt elasticity with EPDM content in PP/EPDM blend, and with varying GF content at any given composition of the matrix in PP/EPDM/GF ternary system, in the studied range are presented and discussed. Resultes on melt viscosity and melt elasticity show (i) reduced effect of GF at high shear rates on these properties and (ii) upward deviation of melt viscosity versus shear rate curve at low shear rates. A change in flow behavior in presence of GF is observed around a critical shear rate 2 × 103 s?1 and is attributed to the difference of interaction of GF and the dispersed rubber droplets at high and low shear rates. Elastic recovery showed nonequilibrium behavior at low shear rates.  相似文献   

7.
The structure and properties of polyolefin blends of ethylene–propylene–diene terpolymer (EPDM) and polypropylene were studied. Blends were prepared in a laboratory internal mixer where EPDM was cured with PP under shear with dicumyl peroxide (DCP) at different shear conditions (blend–cure). Blends were also prepared for comparison from EPDM which were dynamically cured in the absence of PP and blended later (cure–blend). The effect of DCP concentration, intensity of the shear mixing, and rubber/plastic composition were studied. In blend–cure, the melt viscosity increased with increasing DCP concentration in blends of 75% EPDM and 25% PP, but it decreased with increasing DCP concentration in blends of 75% PP and 25% EPDM. In cure–blend, however, the melt viscosity increased with increasing DCP concentration for all compositions. The melt viscosity decreased with increasing intensity of the shear mixing presumably due to the formation of the smaller segregated microdomain of the crosslinked EPDM gels in both blend–cure and cure–blend materials. The crystallization rate was higher in EPDM/PP blends than in PP homopolymer. The crystallization rates for various blending conditions were also compared.  相似文献   

8.
The rheological properties and crystalline structure of the polyolefin ternary blends of EPDM/polypropylene/high density polyethylene were studied. Blends were prepared in a laboratory internal mixer by two different methods. In blend–cure process, blending and curing were performed simultaneously and EPDM was cured by dicumyl peroxide (DCP) in the presence of PP/HDPE under shear. The cure–blend was to cure EPDM alone first under shear (dynamic curing) and then mix the cured EPDM with PP and HDPE. The effect of DCP concentration, intensity of the shear mixing, and the rubber/plastic composition were studied using capillary rheometer and X-ray diffractometer. The PP-rich ternary blends showed the effect of the mechanooxidative degradation of PP by shear and peroxide. The melt viscosity increased with increasing DCP concentration in blends of EPDM-rich compositions. X-ray diffraction studies revealed that the inclusion of 25 wt % of linear EPDM in the PP/HDPE mixture for the PP-rich ternary blends changed the crystal structure of polypropylene component in the ternary blends. However, the dynamic curing did not alter the crystal structure of PP or HDPE in the blends.  相似文献   

9.
高韧性和高流动性PP/EPDM共混材料的研制   总被引:9,自引:0,他引:9  
顾方明  任俊 《塑料工业》1997,25(6):83-86,91
研究了乙丙橡胶的门尼粘度和结晶性对聚丙烯增韧效果的影响,结果表明,高门尼粘度,部分结晶性橡胶在获得较好韧性的同时不保持较高的刚性,但流动性较差,通过加入HDPE能在复合增韧的同时提高共混物的流动性,添加少量油酸酰胺和硬脂酰胺敢能适当提高共混物的流动性,采用过氧化物降解聚丙烯可以显著提高共混物的流动性,但韧性明显下降,采用可控降解和动态硫化相结合的技术是在得到高韧性,高流动性共混PP的有效途径。  相似文献   

10.
Studies are presented on melt rheological properties of binary blend of polypropylene (PP) and acrylonitrile–butadiene–styrene terpolymer (ABS), and ternary blend of PP, ABS, and low-den-sity polyethylene (LDPE). Data obtained in capillary rheometer are presented to describe the effect of blending ratio, shear stress, and shear rate on flow properties, melt viscosity, and melt elasticity. At a blend composition corresponding to 10 wt % ABS content, both binary and ternary blends show maximum in melt viscosity accompanied by minimum in melt elasticity. Pseudoplasticity of the melt decreases with increasing ABS content. In ternary blends, LDPE facilitates the flow at low LDPE contents and obstructs the flow at high LDPE contents. Scanning electron microscopic studies are also presented to illustrate the state of dispersion and its variation with blend composition.  相似文献   

11.
PP/EPDM-g-MAH/TPU共混物流变行为的研究   总被引:8,自引:0,他引:8  
以EPDM g MAH为增容剂 ,采用熔融共混技术制备了热塑性聚氨酯弹性体 (TPU)增韧聚丙烯 (PP)材料 ,研究了PP/EPDM g MAH/TPU共混物的流变行为 ,重点讨论了增容剂EPDM g MAH对共混物流变行为的影响。结果表明 :共混物熔体的非牛顿指数n <1,且随EPDM g MAH用量的增加而减小 ,表观粘度随剪切速率和剪切应力的增大而降低 ,熔体符合假塑性流体的流动规律 ;温度升高 ,表观粘度降低 ;随着EPDM g MAH用量的增加 ,共混物的表观粘度升高 ,粘流活化能有所减小  相似文献   

12.
Epoxidized natural rubber (ENR) was prepared using the performic epoxidation method. TPVs based on ENR/PP blends were later prepared by melt‐mixing processes via dynamic vulcanization. The effects of blend ratios of ENR/PP, types of compatibilizers, and reactive blending were investigated. Phenolic modified polypropylene (Ph‐PP) and graft copolymer of maleic anhydride on polypropylene molecules (PP‐g‐MA) were prepared and used as blend compatibilizers and reactive blending components of ENR/Ph‐PP and ENR/PP‐g‐MA blends. It was found that the mixing torque, apparent shear stress and apparent shear viscosity increased with increasing levels of ENR. This is attributed to the higher viscosity of the pure ENR than that of the pure PP. Furthermore, there was a higher compatibilizing effect because of the chemical interaction between the polar groups in ENR and PP‐g‐MA or Ph‐PP. Mixing torque, shear flow properties (i.e., shear stress and shear viscosity) and mechanical properties (i.e., tensile strength, elongation at break, and hardness) of the TPVs prepared by reactive blending of ENR/Ph‐PP and ENR/PP‐g‐MA were lower than that of the samples without a compatibilizer. However, the TPVs prepared using Ph‐PP and PP‐g‐MA as compatibilizers exhibited higher values. We observed that the TPVs prepared from ENR/PP with Ph‐PP as a compatibilizer gave the highest rheological and mechanical properties, while the reactive blending of ENR/PP exhibited the lowest values. Trend of the properties corresponds to the morphology of the TPVs. That is, the TPV with Ph‐PP as a blend compatibilizer showed the smallest rubber particles dispersed in the PP matrix, while the reactive blending of ENR/PP‐g‐MA showed the largest particles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4729–4740, 2006  相似文献   

13.
研究了不同比例共混的茂金属聚乙烯(mPE)和高压聚乙烯(LDPE)熔体的流变行为,讨论了共混物组成、剪切速率和剪切应力以及温度对熔体流变曲线、熔体粘度和膨胀比的影响,mPE的加工提供了理论依据。不同共混比的熔体均为假塑性流体,且熔体假塑性随LDPE含量增大而增强。熔体流动活化能随LDPE组成的增加逐渐增大,粘度对温度的敏感性增强,共混物的非牛顿指数随LDPE的增加而降低,改善了mPE的加工性能。  相似文献   

14.
The effect of ultrasound on flow behaviors of metallocene‐catalyzed linear low‐density polyethylene (mLLDPE) melt in capillary‐like die during the extrusion is investigated in this article. The rise in die temperature is found with increasing ultrasound power, especially at lower initial die temperature. At the same die temperature, the presence of ultrasound can decrease the apparent viscosity and the viscous flow activation energy of mLLDPE melt then increase its slip velocity at the capillary wall in the die. The flow behavior of mLLDPE melt is enhanced during ultrasound‐assisted extrusion as the presence of ultrasound can enhance the mobility and the orientation of entangled segments. It is also found that ultrasound can break the dispersed phase of mLLDPE/polyolefin elastomer (POE) blend into small pieces thus improve the homogeneous dispersion of POE phase in mLLDPE matrix. A possible mechanism for enhanced flow behaviors of mLLDPE melt because of the presence of ultrasound is also proposed. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

15.
《Polymer》1997,38(22):5557-5564
The mechanical properties of self-reinforced liquid crystalline polymer/polypropylene (LCP/PP) blends strongly depend on the viscosity ratio of the blend components in the melt. This ratio was determined for PP blends with different commercial LCPs (Vectra A950 and Vectra B950), by means of capillary rheometry, under conditions representative for the blending process during extrusion. It was found that optimal mechanical properties were achieved when the LCP/PP viscosity ratio at 285°C ranges between 2 and 4 at a shear rate of 800–1000s−1. The LCP/PP viscosity ratio appears to be shear stress dependent. This creates the option of fine tuning the LCP droplet deformation process by means of the extrusion rate. This shear stress dependence is more pronounced for PP blends with Vectra B950 than for blends with Vectra A950.  相似文献   

16.
研究了季戊四醇三丙烯酸酯熔融接枝PP/LDPE共混物体系中,各因素对产物熔体质量流动速率和熔体强度的影响,并对产物拉伸粘度和化学接枝情况等进行了测试及表征,实验结果表明,引发剂用量较低,单体用量较高时,产物的熔体质量流动速率小,熔体强度较高,拉伸粘度较大,且在拉伸过程中,产生了应变硬化效应;随着单体用量的增加,接枝率会有所上升。  相似文献   

17.
廖家志 《塑料工业》1996,24(4):90-93
本文研究了PP2400的流变性能对其BOPP成膜性能的影响。通过与进口PP进行对比试验,发现PP2400的分子量高、粘度大、熔体强度较大。正是由于分子量较高,导致粘度较高,PP2400料的塑化度减小,影响了塑化的均匀性,从而造成挤出性能的恶化。指出问题的关键在于如何处理好粘度与熔体强度之间的平衡关系。掺混进口BOPP料,可降低体系的挤出粘度,提高塑化的均匀性,使厚片的厚度与宽度控制精确,并使厚片内应力均匀,对后续成膜工艺相当重要。加大口模长度,延长PP分子链的松弛时间对改善厚片质量进而提高成膜性能有所裨益。适当提高挤出厚片时的挤出温度,将能改善体系的流动性能,提高塑化的均匀性,减小出口膨胀率  相似文献   

18.
Isotactic polypropylene (PP) has been blended with poly(ethylene-co-methyl acrylate) (EMA) (75/25 wt/wt%) in a single-screw extruder. The compatibilizing effect of polypropylene grafted with maleic anhydride (PP-g-MAH) has been examined. The nonisothermal crystallization of the developed blends has been investigated using differential scanning calorimetry (DSC) and analyzed using Avrami, Tobin and Liu models. The thermal stability of the blends was assessed through thermogravimetric analysis (TGA). The tensile and impact properties, as well as the melt viscosity, have also been determined. The presence of rubber accelerates the crystallization of PP. The thermal stabilities of the blends are intermediate between those of their constituents. Tensile strength and modulus are reduced upon incorporation of EMA into PP, but ultimate elongation and impact strength are improved. The melt viscosity variation with shear rate for all the systems was typical of shear-thinning behavior. The compatibilizing agent has a pronounced effect on enhancing the thermal and mechanical properties of the blend.  相似文献   

19.
Melt rheological properties of blends of polypropylene (PP) and PP grafted with maleic anhydride (PP‐g‐MA) are studied using a capillary rheometer. A pseudoplastic flow behavior is observed. The pseudoplasticity of the melt reduces with an increase of PP‐g‐MA content and/or temperature. The PP‐g‐MA component in the blend acts as decreasing melt viscosity, especially in the lower shear rate region, while the addition of PP‐g‐MA to PP does not cause obvious increase of die swell ratio. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1641–1648, 1999  相似文献   

20.
A single screw extruder with a static mixer was used to prepare molten blends of thermoplastic polyvinyl alcohol (TPVA) and polypropylene (PP). The effects of shear rate, blending ratio and temperature on rheological properties for the blends in capillary extrusions were investigated, and ends correction was also carried out. Rheological parameters such as non-Newtonian index and activation energy were also calculated and evaluated. It was found that the viscosities of the blends were lower than those of TPVA and PP; moreover, the non-Newtonian indices and the activation energies of the blend melts were higher than those of the homopolymers. In particular, the blend with 60 wt% TPVA had the highest non-Newtonian indices and activation energies among blend melts. These results indicate that TPVA and PP blends are negative deviation blends. Furthermore, at a blending ratio of 60 wt% of TPVA, the shear-sensitivity of the viscosity was the lowest and the temperature dependence of the viscosity was the highest. In addition, an increase in temperature led to an increase in non-Newtonian index, therefore the shear-rate dependence of the blend viscosities decreased with a rise in temperature. As the shear rate was increased, the variation of the viscosity over blending ratios decreased while the activation energy of the blends decreased. Thus the effects of temperature and blending proportion on flow behavior were diminished by increasing shear rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号