首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
张家鑫  许丽萍  王忠斌  范石伟 《硅谷》2010,(19):37-37,31
自旋电子学起源于巨磁阻效应(GMR),目前已经成为凝聚态物理学领域的研究热点,其中半导体自旋电子学是自旋电子学中人们所关注的一个重要领域。从磁性半导体、自旋电子的注入、检测、输运等方面综述半导体自旋电子学的最新研究进展,并且指出目前半导体自旋电子学研究的重点及难点。  相似文献   

2.
自旋电子学功能材料   总被引:1,自引:0,他引:1  
都有为 《功能材料》2004,35(Z1):54-59
巨磁电阻效应的发现开拓了磁电子学的新领域,20世纪90年代,磁电子学得到迅速的发展,并在应用上取得显著的经济效益与巨大的社会效应,本世纪初,研究的重点已转移到半导体自旋电子学的新方向,并已取得重要的进展.本文将结合我们科研组的研究工作,概述从磁电子学到半导体自旋电子学材料的发展,重点介绍稀磁半导体材料研究的进展.  相似文献   

3.
《现代材料动态》2007,(1):24-25
据中国科技信息网报道:美国俄亥俄大学的科学家们制造了一种改进的磁性半导体材料,解决了自旋电子学领域多年来未解决的问题。与经典的电子学中利用电子的电荷不同,自旋电子学集中利用电子的自旋来携带和储存信息。自旋电子学将通过更高的运行速度、更强的存储能力和更少的能耗,给电子工业带来重大的变革。  相似文献   

4.
《纳米科技》2006,3(5):33-33
美国俄亥俄大学的科学家们制造了一种改进的磁性半导体材料。这个三明治结构中间的氮化镓和镓锰合金层几乎消灭了半导体和铁磁层间的混合,并允许电子自旋被控制,解决了自旋电子学领域多年来未解决的问题。  相似文献   

5.
自旋电子学主要研究电子自旋在固体物理中的作用,是一门结合磁学与微电子学的新兴交叉学科。本文简单介绍了自旋电子学的概念及其内容,综述了自旋电子学目前的研究,尤其是半导体自旋电子学。最后对自旋电子器件的应用进行了展望。  相似文献   

6.
巨磁电阻效应的发现开拓了磁电子学的新领域,20世纪90年代,磁电子学到了迅速的发展,并在实际应用方面取得了显著的经济效益与巨大的社会效益,本世纪初,研究重点已转移到新的半导体自旋电子学方向,并取得了重要进展。本文结合作者率领的科研组的研究工作,阐述了从磁电子学材料到半导体自旋电子学材料的发展概况,其中,重点介绍了稀磁半导体材料的研究进展。  相似文献   

7.
以氧化物宽禁带半导体为基体,通过掺杂磁性元素,可将非磁性半导体转变成铁磁性半导体,利用这些铁磁性半导体,能将新型的自旋电子器件集成到传统的微电子器件上,构成功能丰富的新型器件.由于稀磁半导体材料在自旋电子学中的重要作用,近年来受到广泛的关注.简要总结了有关氧化物稀磁半导体研究的发展状况;分析了制备条件对其磁性的可能影响;重点介绍了该系统中有关磁性起源的理论模型,包括双交换机制、磁极化子模型、RKKY模型等;比较了2种磁极化子理论模型,并对这些模型的适用范围进行了分析讨论.另外,还介绍了该体系微结构和磁结构的一些检测方法以及与磁性相关的输运性质、反常霍尔效应等.  相似文献   

8.
自旋电子学是目前固体物理和电子学中的一个“热点”,其中心议题是利用和控制固体,尤其是半导体中的自旋自由度。本主要内容是:1、MBE生长的Ⅲ-Ⅴ族基铁电薄膜和异质结构,2、具有高铁磁转变温度的Mm6掺杂的GaAs/P-A1GaAs异质结及与自旋相关性质的控制,3、Si基自旋电子学。  相似文献   

9.
锰氧化物LaSrMnO系列材料是一类有用的自旋电子学材料。La0.5Sr0.5MnO3是一种铁磁金属性材料。利用了在La位掺杂Y的方法来改变La0.5Sr0.5MnO3的金属性而保持它的铁磁性。通过样品输运和磁化强度等的测量对La0.45Y0.05Sr0.5MnO3样品的物性进行了研究,获得了居里温度Tc=292K的亚铁磁半导体样品。  相似文献   

10.
简要报道了近年来在南京大学磁性材料研究中的若干进展,内容涉及:核壳结构复合纳米材料的制备与磁性,原子尺度磁性材料的自组织制备,各向异性永磁薄膜,轻稀土巨磁致伸缩材料,磁致冷材料,多铁性材料,双钙钛矿室温隧道磁电阻效应,自旋电子学材料,稀磁半导体中的RKKY互作用及团簇化对铁磁性的影响,有机体系中的自旋输运等。  相似文献   

11.
Strong effect of structural design on spin functionality is observed in quantum structures based on II–VI semiconductors. Spin switching is realized when using a thin layer of Zn0.95Mn0.05Se diluted magnetic semiconductor (DMS) as a spin manipulator. This is evident from the polarization of photoluminescence related to a spin detector (an adjacent nonmagnetic quantum well (QW)) measured under the resonant excitation of the spin-up and spin-down states of the DMS, which is identical in value but opposite in sign. The achieved spin switching is suggested to reflect fast carrier diffusion from the DMS due to the absence of an energy barrier between the upper spin state of the DMS layer and the QW. On the other hand, the spin alignment is accomplished in the tunneling structures where the presence of the energy barrier inserted between a spin manipulator (i.e., a ZnMnSe/CdSe DMS superlattice) and a spin detector ensures a slow escape rate from the DMS layer.  相似文献   

12.
Semiconductor nanostructures show many special physical properties associated with quantum confinement effects, and have many applications in the opto-electronic and microelectronic fields. However, it is difficult to calculate their electronic states by the ordinary plane wave or linear combination of atomic orbital methods. In this paper, we review some of our works in this field, including semiconductor clusters, self-assembled quantum dots, and diluted magnetic semiconductor quantum dots. In semiconductor clusters we introduce energy bands and effective-mass Hamiltonian of wurtzite structure semiconductors, electronic structures and optical properties of spherical clusters, ellipsoidal clusters, and nanowires. In self-assembled quantum dots we introduce electronic structures and transport properties of quantum rings and quantum dots, and resonant tunneling of 3-dimensional quantum dots. In diluted magnetic semiconductor quantum dots we introduce magnetic-optical properties, and magnetic field tuning of the effective g factor in a diluted magnetic semiconductor quantum dot.  相似文献   

13.
Spin injection processes in the double quantum dots of ZnSe-based diluted magnetic semiconductors are discussed. Double quantum dots are fabricated from ZnSe-based double quantum wells by electron beam lithography and wet etching. In these samples, the photo-excited carriers in the magnetic dots are injected into the non-magnetic dots. The circular polarization degrees of photoluminescence from the non-magnetic dots are measured by micro-photoluminescence measurement system under the magnetic field up to 5 T. The maximum spin polarization degrees of injected carriers determined from our experiment are 10% for double quantum wells and 15% for double quantum dots. The spin injection efficiency was estimated both from the observed circular polarization degree and the diffusion length of carriers. We concluded that the spin injection efficiency is increased in the double quantum dots.  相似文献   

14.
We provide an overview of measurements that elucidate the effects of interactions, quantum confinement, reduced dimensionality, and interfacial geometries on coherent electronic spin dynamics and spin transport in doped semiconductors. The experiments focus on a variety of doped semiconductor systems, ranging from bulk n-GaAs crystals to modulation doped II-VI magnetic semiconductor quantum wells. In particular, the latter provide model systems in which electron gases are strongly exchange-coupled to an engineered distribution of magnetic moments, hence allowing one to systematically tailor spin interactions between confined electronic states, magnetic ions, and nuclei. Two complementary techniques including state-of-the-art spin dynamical probes having high temporal (~100 fs) and spatial (~100 nm) resolution, and low-temperature magneto-transport, are used to survey a variety of physical phenomena in these systems.  相似文献   

15.
Phosphorus donor spins in silicon are promising quantum bit (qubit) candidates. They have a natural confinement potential, long spin lifetimes and decades of use in the semiconductor fabrication industry. Readout of a single qubit is a necessary step to build a quantum computer, which could potentially solve particular problems exponentially faster than conventional computers. Electrically detected magnetic resonance has previously been used to measure the spin state of an ensemble of spins. In this literature review, the concept of a quantum computer is introduced before the potential of using electrically detected magnetic resonance to measure the spin state of a single donor spin qubit in a silicon transistor is discussed.  相似文献   

16.
2x (FeNi/CoZnO)/ZnO/(CoZnO/Co) x2 spin-inJection devices were prepared by sputtering and photo-lithography. In the devices, two composite magnetic layers 2x(FeNi/CoZnO) and (CoZnO/Co)x2 with different coercivities were used to fabricate the ZnO-based semiconductor spin valve. Since the CoZnO ferromagnetic semiconductor layers touched the ZnO space layer directly, the significant spin injection from CoZnO into ZnO was observed by measuring the magnetoresistance of the spin-injection devices. The magnetoresistance reduced linearly with increasing temperature, from 1.12% at 90 K to 0.35% at room temperature.  相似文献   

17.
Controlling and monitoring individual spins is desirable for building spin-based devices, as well as implementing quantum information processing schemes. As with trapped ions in cold gases, magnetic ions trapped on a semiconductor lattice have uniform properties and relatively long spin lifetimes. Furthermore, diluted magnetic moments in semiconductors can be strongly coupled to the surrounding host, permitting optical or electrical spin manipulation. Here we describe the zero-field optical manipulation of a few hundred manganese ions in a single gallium arsenide quantum well. Optically created mobile electron spins dynamically generate an energy splitting of the ion spins and enable magnetic moment orientation solely by changing either photon helicity or energy. These polarized manganese spins precess in a transverse field, enabling measurements of the spin lifetimes. As the magnetic ion concentration is reduced and the manganese spin lifetime increases, coherent optical control and readout of single manganese spins in gallium arsenide should be possible.  相似文献   

18.
We present an approach to electrical control of the spin polarization in a diluted magnetic semiconductor (DMS) structure. A variable magnetic field induced by a micro-scale current loop magnetizes the Mn2+ ions in a CdMnTe/CdMgTe DMS quantum well, which via the sp-d exchange interaction polarizes photo-generated electron-hole pairs confined in the well. A maximum spin polarization degree of ±8.5% is obtained at 4.2 K without external magnetic field. The current-induced magnetic field and the current-generated heating of the spin system are quantitatively extracted by micro magneto-luminescence measurements.  相似文献   

19.
We use the combination of nonequilibrium phonon and exciton luminescence techniques to study the spin dynamics in diluted magnetic semiconductor structures with (Cd,Mn)Te and (Cd,Mn)Se quantum dots (QDs). We show that the spin–lattice relaxation (SLR) of Mn ions in these structures differs strongly from the SLR in quantum wells. We explain the results by a model where SLR process in structures with QDs is modified by the spin diffusion on Mn ions from the QD to a wetting layer.  相似文献   

20.
Highly polarized nuclear spins within a semiconductor quantum dot induce effective magnetic (Overhauser) fields of up to several Tesla acting on the electron spin, or up to a few hundred mT for the hole spin. Recently this has been recognized as a resource for intrinsic control of quantum-dot-based spin quantum bits. However, only static long-lived Overhauser fields could be used. Here we demonstrate fast redirection on the microsecond timescale of Overhauser fields on the order of 0.5 T experienced by a single electron spin in an optically pumped GaAs quantum dot. This has been achieved using coherent control of an ensemble of 10(5) optically polarized nuclear spins by sequences of short radiofrequency pulses. These results open the way to a new class of experiments using radiofrequency techniques to achieve highly correlated nuclear spins in quantum dots, such as adiabatic demagnetization in the rotating frame leading to sub-μK nuclear spin temperatures, rapid adiabatic passage, and spin squeezing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号