首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
神华煤直接液化残渣热解动力学研究   总被引:3,自引:0,他引:3       下载免费PDF全文
运用分布活化能模型(DAEM)对神华煤直接液化残渣热解过程进行了分析,得出残渣热解活化能E的算术平均值为144.6 kJ/mol,分布在60.1~280.4 kJ/mol范围内,活化能分布函数f(E)为非正态分布函数;指前因子k0与活化能E之间存在补偿关系.  相似文献   

2.
神华煤液化残渣的热解特性研究   总被引:4,自引:0,他引:4       下载免费PDF全文
以N2为载气,流速为20 mL/min,升温速率分别为15,30,45和60 ℃/min,终温1 200 ℃ 的条件下,用TGA/SDTA851热失重分析仪进行了神华煤液化残渣的热解特性试验研究.实验得到了神华煤液化残渣热解的TG和DTG曲线,表明神华煤液化残渣的热解是分两步进行的.在低温段主要是神华煤液化残渣中挥发性的气体溢出引起热解失重;高温段则主要是一些高分子有机质的热解过程.低温段的热解是主要的,它基本上热解掉了神华煤液化残渣重量的30%~40%.神华煤液化残渣挥发分含量很高且具有集中析出的特性,在240~370 ℃区间内可挥发物质迅速热解完毕.其在高温段的热解产率很小,只有总重量的10%~13%.随着升温速率的增加,低温段和高温段热解的区分更加明显,且使神华煤液化残渣的热解产率提高.此外,还给出了不同升温速率下的神华煤液化残渣热解特性数据和化学反应动力学参数.  相似文献   

3.
煤直接液化残渣与褐煤共热解动力学研究   总被引:1,自引:0,他引:1  
为了解决煤炭液化残渣在热解过程中软化熔融并剧烈膨胀导致难以利用的问题,在温度范围为30 ~900℃,升温速率分别为10、20、30、40℃/min的情况下,借助热重分析仪对煤直接液化残渣与褐煤进行程序升温共热解试验,采用Doyle法分析共热解动力学,将动力学结果与共热解协同作用进行关联.结果表明:共热解过程可用3个串联的一级反应描述,温度区间分别为200 ~310、310~470、470~900℃,其中310 ~470℃对应共热解反应的活泼分解阶段,反应活化能(40 ~ 50 kJ/mol)远大于低、高温反应活化能(10 ~20 kJ/mol).液化残渣与褐煤共热解降低了活泼分解阶段的反应活化能,加快了反应速率,增大了热解失重率,使共热解反应在300 ~550℃表现出正协同作用.  相似文献   

4.
神华煤及其液化残渣水蒸气气化动力学研究   总被引:1,自引:0,他引:1  
为研究神华煤半焦和神华煤直接液化残渣半焦的水蒸气气化动力学过程,利用不同温度下神华煤半焦和残渣半焦水蒸气气化碳转化率曲线,采用均相反应模型(HM)和未反应缩芯模型(SCM)对神华煤和残渣的水蒸气气化动力学进行了模拟,得到煤半焦和残渣半焦均相反应模型和未反应缩芯模型的Arrhenius方程式。将模拟结果和试验数值进行比较,发现均相反应模型和未反应缩芯模型都能较好地模拟煤半焦和残渣半焦的水蒸气气化过程,且均相反应模型的模拟结果要好于未反应缩芯模型的模拟结果。  相似文献   

5.
为获得印尼褐煤湿煤未(煤泥)热解燃烧的反应机理,采用热重法研究了印尼褐煤湿煤末在不同加热速率下的热解和着火燃烧过程,得到热解和燃烧反应特征参数;并采用Coats-Redfern积分法进行动力学分析。结果表明:升温速率对热解和燃烧反应特征温度和其他特征参数基本都有正相关的影响。对于热解过程,反应线性拟合结果呈明显的三段式分布,不同升温速率下质量平均表观活化能分别为43.2,33.2和33.9 kJ/mol。相同转化率区间内,试样热解活化能与升温速率关系不大;而在同一升温速率下,试样热解反应活化能随转化率的增加而增加,呈正相关性。与热解反应不同,燃烧反应动力学参数在整个反应区间直接线性拟合结果较好。10,30和50℃/min升温速率下的反应分别为2级、1.5级和1.5级化学反应,活化能分别为101.74,72.93和51.82 kJ/mol。  相似文献   

6.
煤及其显微组分热解特性研究   总被引:1,自引:0,他引:1  
选取4种不同变质程度的煤类,对原煤及其显微组分进行了热解特性研究,利用最大失重速率评价了原煤及其显微组分富集物的热解反应性,并采用一级反应模型、Doyle积分法求取了样品的动力学参数.动力学分析结果表明,由于样品热解各段的反应历程不同,因此求取的热解动力学参数也不同,4种原煤及其显微组分主要热解段的表观活化能介于35.93 kJ/mol~63.84 kJ/mol.  相似文献   

7.
为实现液化残渣的高效利用,以神华煤直接液化残渣为研究对象,考察液化残渣在加压条件下的黏温特性,即采用Arrhenius方程对实验数据进行处理以获得不同升温阶段的液化残渣流动活化能。研究结果如下:神华液化残渣黏度随温度升高总体呈下降趋势,210℃~230℃时其黏度随温度下降较快,温度超过240℃后其黏度随温度下降趋势减缓,温度超过400℃后其黏度开始逐渐上升。温度在210℃~230℃范围时,流动活化能ΔE最大,其值为98.67kJ/mol;温度在240℃~390℃范围时,流动活化能ΔE减小,其值为85.80kJ/mol;温度在400℃~430℃范围时,流动活化能ΔE为负值,其值为-6.95kJ/mol,说明此时温度对液化残渣黏度的影响已非主导因素,分析其原因可能由于液化残渣开始发生缩聚而造成。  相似文献   

8.
为提高生物质热解油的利用效率,探究生物质热解油在提质转化过程中的热解特性,进一步拓宽生物质热解油的利用途径,选取2种木质纤维素类生物质热解油作为研究对象,采用热重分析仪分别考察2种生物油的热解行为。选用Friedman法、FWO法2种等转化率方法求取生物质热解油整体热解反应的动力学参数,选用分布活化能模型(DAEM)法将生物质热解油热解过程分为轻质组分和重质组分2种虚拟组分热解过程,并求取2种虚拟组分热解的动力学参数。2种生物油的轻重组分含量差异导致2者的热解行为表现出不同特征,木屑热解生物油的最大质量变化速率对应温度和热失重反应结束温度均高于稻壳热解生物油。Friedman法计算所得2种生物油的活化能分别为89.92、145.98 kJ/mol,FWO法计算所得2种生物油的活化能分别为90.30、138.44 kJ/mol,2种方法计算结果具有较好的一致性;木屑热解生物油的平均活化能(142.21 kJ/mol)高于稻壳热解生物油(90.11 kJ/mol)。进一步采用DAEM方法将2种生物油热解过程分别分为轻质组分热解和重质组分热解,两组分DAEM方法动力学计算结果表明稻壳热解生物...  相似文献   

9.
炼焦煤尾煤热解特性及动力学研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基于炼焦煤尾煤和原煤的热解实验对比,研究热解终温、升温速率和高矿物质含量对炼焦煤尾煤热解特性的影响,并求解炼焦煤尾煤热解的动力学参数。结果表明:热解终温和升温速率对炼焦煤尾煤的热解过程有重要的影响,高温有利于尾煤中高分子有机物裂解和挥发分析出,但高矿物质含量使尾煤热解在850 ℃后终温作用不明显;炼焦煤尾煤中矿物质含量对其热解具有抑制作用,使尾煤热解过程向高温段推移;炼焦煤尾煤的热解过程可以用3个二级反应描述,通过动力学参数拟合计算结果得出炼焦煤尾煤热解反应活化能为54.7~131.1 kJ/mol。  相似文献   

10.
为了探究贫煤煤样的氧化燃烧热效应及热动力学行为,分别采用C80微量热系统和热重实验装置对样品进行测试;分析了贫煤煤样在低温氧化及氧化燃烧过程中的热效应,同时也研究了升温速率对贫煤燃烧过程的影响,最后对煤样燃烧过程中的表观活化能和最概然机理函数进行了分析。结果表明:贫煤的低温氧化过程可划分为缓慢氧化阶段、加速氧化阶段和快速氧化阶段;随着升温速率的升高,煤样的TG/DTG曲线向高温区域移动,DTG曲线峰值升高,燃点温度升高;煤粉在热解燃烧阶段的表观活化能随转化率的增加呈现出先升高后下降的趋势,在转化率为0.2时表观活化能达到最大值,为32.4 kJ/mol;升温速率对反应最概然机理函数影响较小,4种升温速率下的反应最概然机理函数均符合A-E方程随机成核和随后生长模型,且函数曲线峰值随升温速率的升高而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号