首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 626 毫秒
1.
A Suitable Tool for Sustainable Groundwater Management   总被引:1,自引:0,他引:1  
Artificial recharge is used to increase the availability of groundwater storage and reduce saltwater intrusion in coastal aquifers, where pumping and droughts have severely impaired groundwater quality. The implementation of optimal recharge methods requires knowledge of physical, chemical, and biological phenomena involving water and wastewater filtration in the subsoil, together with engineering aspects related to plant design and maintenance operations. This study uses a novel Decision Support System (DSS), which includes soil aquifer treatment (SAT) evaluation, to design an artificial recharge plant. The DSS helps users make strategic decisions on selecting the most appropriate recharge methods and water treatment technologies at specific sites. This will enable the recovery of safe water using managed aquifer recharge (MAR) practices, and result in reduced recharge costs. The DSS was built using an artificial intelligence technique and knowledge-based technology, related to both quantitative and qualitative aspects of water supply for artificial recharge. The DSS software was implemented using rules based on the cumulative experience of wastewater treatment plant engineers and groundwater modeling. Appropriate model flow simulations were performed in porous and fractured coastal aquifers to evaluate the suitability of this technique for enhancing the integrated water resources management approach. Results obtained from the AQUASTRESS integrated project and DRINKADRIA IPA CBC suggest the most effective strategies for wastewater treatments prior to recharge at specific sites.  相似文献   

2.
Combined simulation-optimization approaches have been used as tools to derive optimal groundwater management strategies to maintain or improve water quality in contaminated or other aquifers. Surrogate models based on neural networks, regression models, support vector machies etc., are used as substitutes for the numerical simulation model in order to reduce the computational burden on the simulation-optimization approach. However, the groundwater flow and transport system itself being characterized by uncertain parameters, using a deterministic surrogate model to substitute it is a gross and unrealistic approximation of the system. Till date, few studies have considered stochastic surrogate modeling to develop groundwater management methodologies. In this study, we utilize genetic programming (GP) based ensemble surrogate models to characterize coastal aquifer water quality responses to pumping, under parameter uncertainty. These surrogates are then coupled with multiple realization optimization for the stochastic and robust optimization of groundwater management in coastal aquifers. The key novelty in the proposed approach is the capability to capture the uncertainty in the physical system, to a certain extent, in the ensemble of surrogate models and using it to constrain the optimization search to derive robust optimal solutions. Uncertainties in hydraulic conductivity and the annual aquifer recharge are incorporated in this study. The results obtained indicate that the methodology is capable of developing reliable and robust strategies for groundwater management.  相似文献   

3.
A Cost-Effective Method to Control Seawater Intrusion in Coastal Aquifers   总被引:5,自引:1,他引:4  
Intrusion of seawater into coastal aquifers is considered one of the most important processes that degrade water-quality by raising the salinity to levels exceeding acceptable drinking standards. Therefore saltwater intrusion should be prevented or at least controlled to protect groundwater resources. This paper presents a cost-effective method to control seawater intrusion in coastal aquifers. This methodology ADR (Abstraction, Desalination and Recharge) includes; abstraction of saline water and recharge to the aquifer after desalination. A coupled transient density-dependent finite element model is developed for simulation of fluid flow and solute transport and used to simulate seawater intrusion. The simulation model has been integrated with an optimization model to examine three scenarios to control seawater intrusion including; abstraction, recharge and a combination system, ADR. The main objectives of the models are to determine the optimal depths, locations and abstraction/recharge rates for the wells to minimize the total costs for construction and operation as well as salt concentrations in the aquifer. A comparison between the combined system (ADR) and the individual abstraction or recharge system is made in terms of total cost and total salt concentration in the aquifer and the amount of repulsion of seawater achieved. The results show that the proposed ADR system performs significantly better than using abstraction or recharge wells alone as it gives the least cost and least salt concentration in the aquifer. ADR is considered an effective tool to control seawater intrusion and can be applied in areas where there is a risk of seawater intrusion.  相似文献   

4.

Groundwater is a primary source of drinking water in the Mediterranean, however, climate variability in conjunction with mismanagement renders it vulnerable to depletion. Spatiotemporal studies of groundwater recharge are the basis to develop strategies against this phenomenon. In this study, groundwater recharge was spatiotemporally quantified using the Soil and Water Assessment Tool (SWAT) in one coastal and one inland hydrological basin in Greece. A double calibration/validation (CV) procedure using streamflow data and MODIS ET was conducted for the inland basin of Mouriki, whereas only ET values were used in the coastal basin of Anthemountas. Calibration and simulation recharge were accurate in both sites according to statistical indicators and previous studies. In Mouriki basin, mean recharge and runoff were estimated as 16% and 9%, respectively. In Anthemountas basin recharge to the shallow aquifer and surface runoff were estimated as 12% and 16%, respectively. According to the predicted RCP 4.5 and 8.5 scenarios, significant variations in groundwater recharge are predicted in the coastal zone for the period 2020–2040 with average annual recharges decreasing by 30% (RCP 4.5) and 25% (RCP 8.5). Variations in groundwater recharge in the inland catchment of Mouriki were insignificant for the simulated period. Anthemountas basin was characterized by higher runoff rates. Groundwater management in coastal aquifers should include detailed monitoring of hydrological parameters, reinforced groundwater recharge during winter and reduced groundwater abstraction during summer depending on the spatiotemporal distribution of groundwater recharge.

  相似文献   

5.
The control of groundwater abstraction from coastal aquifers is typically aimed at minimizing the risk of seawater intrusion, excessive storage depletion and adverse impacts on groundwater-dependent ecosystems. Published approaches to the operational management of groundwater abstraction from regulated coastal aquifers comprise elements of “trigger-level management” and “flux-based management”. Trigger-level management relies on measured groundwater levels, groundwater salinities and/or ecosystem health indicators, which are compared to objective values (trigger levels), thereby invoking management responses (e.g. pumping cut-backs). Flux-based management apportions groundwater abstraction rates based on estimates of aquifer recharge and discharge (including environmental water requirements). This paper offers a critical evaluation of coastal aquifer management paradigms using published coastal aquifer case studies combined with a simple evaluation of the Uley South coastal aquifer, South Australia. There is evidence that trigger-level management offers advantages over flux-based approaches through the evaluation of real-time resource conditions and trends, allowing for management responses aimed at protecting against water quality deterioration and excessive storage depletion. However, flux-based approaches are critical for planning purposes, and are required to predict aquifer responses to climatic and pumping stresses. A simplified modelling analysis of the Uley South basin responses to different management strategies demonstrates the advantages of considering a hybrid management approach that includes both trigger-level and flux-based controls. It is recommended that where possible, trigger-level and flux-based approaches be adopted conjunctively to minimize the risk of coastal groundwater degradation and to underpin strategies for future aquifer management and well-field operation.  相似文献   

6.
为了进一步计算评估滨海深部含水层地下水排泄量,以一个海底深部承压含水层系统为例,包括承压含水层及上覆弱透水含水层(海底),在内陆补给上考虑了与时间无关的年平均补给(常数)和由季节性降雨引起的周期性补给两种情况,从而建立了一个描述承压含水层中海底地下水排泄的数学模型,并得到其解析解。继而利用解析解分析了位于美国南大西洋Onslow海湾的SGD。结果显示,SGD排泄宽度变化范围为0.5~3.0 km,在承压含水层中海岸线处高于平均海平面1.0 m的水头值,其所产生的SGD速率为1.1~10.0 m2/d。  相似文献   

7.
This study proposes a fuzzy multi-objective model for groundwater remediation in petroleum-contaminated aquifers. The optimisation system is designed based on the PAT technology, and includes two objectives (i.e. total pumping rate and average post-remedial contaminant concentration). The relationship between pumping rates and contamination concentrations at all monitoring wells after remediation are determined by a proxy model, which integrates simulation, inference, and optimisation technologies and is composed of intercept, linear, interactive, and quadratic options. Fuzzy algorithms are used to solve the formulated multi-objective optimisation problem to find optimal solutions. The model is then applied to a petroleum-contaminated aquifer in western Canada. The trade-off and λ analyses of the results indicate that the fuzzy multi-objective model has great potential in groundwater remediation applications as it can: (1) provide reliable groundwater remediation strategies, (2) reduce computational costs in the optimization processes, and (3) balance the trade-off between remediation costs and remediation outcomes.  相似文献   

8.
A combined assessment of the potential impacts from climate change (CC) and socio-economic development (SED) on water resources is presented for the most important aquifer in the south of Portugal. The goal is to understand how CC and SED affect the currently large pressures from water consuming and contaminating activities, predominantly agriculture. Short-term (2020–2050) and long-term (2070–2100) CC scenarios were developed and used to build aquifer recharge and crop water demand scenarios, using different methods to account for uncertainty. SED scenarios were developed using bottom-up and top-down methods, and discussed at workshops with farmers and institutional stakeholders in the water sector. Groundwater use was quantified for each scenario. Together with the recharge scenarios, these were run through a calibrated groundwater flow model, to study their individual and joint impacts on groundwater levels and discharge rates into a coastal estuary. Recharge scenarios show clear negative long-term trends and short-term increase in temporal variability of recharge, though short-term model uncertainties are higher. SED scenario 1 (SED1), predicting intensification and decline of small farms, considered the most likely by all workshop participants, shows a large drop in agricultural area and water demand. SED2, a most desired scenario by farmers, foresees growth and modernization of agriculture, but proves unsustainable in combination with predicted CC without efficient adaptation measures. The results thus reveal that CC in the region will dynamically interact with economic factors, and going one step beyond, CC could be directly integrated as a constraint in the development of SED scenarios. Exercises involving the integration of CC and SED regionally based scenarios, constructed in both bottom-up and top- down fashion and discussed in participatory contexts are still rarely used for adaptation, and specifically adaptation of agriculture to water scarcity. The joint analysis of CC and SED revealed challenging, as it involved the use of different methods across the border between natural and social sciences. In our view this method contributes in an encouraging manner to a more holistic and transdisciplinary water management, by allowing a more plausible identification of what (and if) adaptation measures are needed.  相似文献   

9.
Aquifer recharge rates and patterns are often uncertain, especially in arid areas due to sporadic and erratic rainfall. Therefore, determining the optimal groundwater abstraction using classical approaches such as Monte Carlo Simulation (MCS) requires a large number of groundwater simulations and exorbitant computational efforts. The problem becomes even more complex and time consuming for regional coastal aquifers whose domains must be discretized using high-resolution meshes. In fact, even fast evolutionary multi-objective optimization techniques generally require a large number of simulations to determine the Pareto-front among the objectives. This study explores the performance of a Decision Tree (DT) approach for the generation of the Pareto optimal solutions of groundwater extraction. This paper applies the DTs for the optimal management of the Al-Khoud coastal aquifer in Oman. The learning process of the developed DT-based model uses the output of a numerical simulation model to assess the aquifer response based on different abstraction policies. The trained DT network then utilizes the NSGA-II to determine the Pareto-optimal solutions. The simulation show that the general flux pattern in the study area is toward the sea and the hydraulic head following a similar pattern in both best and worst recharging scenarios downstream of the studied recharging dam. Statistical tests showed a good correlation between the DT-based and simulation-based results and demonstrate the capability of the DT approach to obtain high-quality solutions by incorporating a large number of recharge scenarios. Moreover, the required runtime of the DT-based approach is extremely low (5 min) compared to that of the simulation-based method (several days). This means that including additional Monte-Carlo simulations can be readily done in few minutes using the obtained DTs, instead of the long computational time needed by the simulation-based approach.  相似文献   

10.
Rachid  G.  Alameddine  I.  El-Fadel  M. 《Water Resources Management》2021,35(15):5139-5153

Coastal aquifers are vulnerable to saltwater intrusion (SWI) due to several drivers particularly increased water demand and groundwater overexploitation associated with population growth, reduced groundwater recharge, and lately climate change. This study examines the status of SWI in four data scarce coastal aquifers located along the Eastern Mediterranean by assessing how water cycle seasonality, water deficits, and changes in land use and land cover (LULC) have contributed to increased salinity. A framework that combines field monitoring with hydro-geochemical techniques, as well as multivariate and inferential statistical analysis was used to identify the main SWI drivers at play at each aquifer. The overall assessment showed that all four pilot areas exhibited signs of salinization with different severities. The current state of the aquifers ranged from slightly saline (TDS < 1500 ppm) to highly saline (15,000 < TDS < 31,000 ppm). While the level of the SWI was significantly correlated to the dominant land uses at each site, the extent of the water deficit played a dominant role in explaining the occurrence and intensity of observed SWI rates. The findings suggest a synergistic effect between increased water deficits and urbanization and SWI. Site specific measures are discussed for mitigating the impacts of land use, water demand and deficit towards the sustainable management of the groundwater aquifers.

  相似文献   

11.
Optimal Locations of Groundwater Extractions in Coastal Aquifers   总被引:1,自引:0,他引:1  
A regional water supply management model for coastal aquifers was developed. One of its outcomes is the definition of the optimized locations for groundwater withdrawal. Such a tool permits the analysis of alternative plans for groundwater extraction and the sustainable use of water resources in a coastal aquifer subject to saltwater intrusion. The principal components are the evolutionary optimization and the analytical/numerical simulation models. The optimization technique looks for the best well locations taking into consideration the economic results and the satisfaction of the societal water demand. However these two concerns are conditioned by trying to control the saltwater intrusion, i.e., preserving the environmental equilibrium. The simulation model uses the governing mathematical equations for groundwater movement to find the interface between freshwater and saltwater. Because of the non-linearity in the system and the possibility of a jumping interface, a security distance was defined. This is a controlling variable which can be set by the decision makers. The model was applied to a typical case with interesting results. For example, diagrams showing the relationship between the location of the wells and the security distance(s) are of importance to the managers. It was also crucial to have an understanding of the tradeoffs between groundwater withdrawals, positions of the wells from the coast line, and the security distance. The model was also applied to a real case in order to relate the extractions, distances and artificial recharge (not presented in this paper).  相似文献   

12.

Saltwater intrusion into coastal aquifers has become a prominent environmental concern worldwide. As such, there is a need to prepare and implement proper remediation techniques with careful planning of freshwater withdrawal systems for controlling saltwater intrusion in coastal marine and estuarine environments. This paper investigates the performance of groundwater circulation well (GCW) in controlling saltwater intrusion problems in unconfined coastal aquifers. The GCWs have been established as a promising in-situ remedial technique of contaminated groundwater. The GCW system creates vertical circulation flow by extracting groundwater from an aquifer through a screen in a single well and injecting back into the aquifer through another screen. The circulation flow induced by GCW force water in a circular pattern between abstraction and recharge screens and can be as a hydraulic barrier for controlling saltwater intrusion problem in coastal aquifers. In this study, an effort has been made to investigate the behavior of saltwater intrusion dynamics under a GCW. An experiment has been conducted in a laboratory-scale flow tank model under constant water head boundary conditions, and the variable-density flow and transport model FEMWATER is used to simulate the flow and transport processes for the experimental setup. The evaluation of the results indicates that there is no further movement of saltwater intrusion wedge towards the inland side upon implementation of GCW, and the GCW acts as a hydraulic barrier in controlling saltwater intrusion in coastal aquifers. The present study reveals the GCWs system can effectively mitigate the saltwater intrusion problem in coastal regions and could be considered as one of the most efficient management strategies for controlling the problem.

  相似文献   

13.
地下水是指储存在地面以下饱和岩土孔隙、裂隙及溶洞的水。地下水资源量是指某时段内地下含水层接收降水、地表水体、侧向径流及人工回灌等项渗透补给量的总和。其中,地表水体渗透补给量由湖泊(水库、坑塘)周边渗透补给量、河道及渠系渗透补给量和田间灌溉入渗补给量组成。对无资料地区通常采用临近站地形、地貌等相似的地区借用其现有的水文资料来计算地下水资源量。文章对此进行探讨研究。  相似文献   

14.
Groundwater being an important component of the hydrological cycle, estimation of its annual replenishment is essential to evolve a plan for optimum utilization. Groundwater balance approach, which is used extensively for the quantification of recharge and discharge components has been adopted for the rainfall-recharge estimation. Various inflow and outflow components have been identified and estimated for Sagar block in Sagar district of Madhya Pradesh, which faces acute water scarcity and continuous decline in groundwater levels. The computed recharge from rainfall varies between 122.45 and 183.71 MCM. The computed rainfall-recharge is compared with the Chaturvedi (1973), Kumar and Seethapathi (2002), Krishna (1987), and U.P. Irrigation Research Institute models. Models have also been developed to estimate rainfall-recharge for varying ranges of the annual rainfall and have been compared with the existing models. The relative error in estimation of rainfall-recharge from proposed models varies between 0.03 and 9.24%. The overall scenario is net decline in groundwater storage to an extent of ?31.31 MCM over a period of 16 years from 1985–1986 to 2000–2001. The trend analysis by Kendall’s rank correlation test, regression test for linear trend and Mann–Kendall test also clearly suggests falling trends in groundwater storage at 5% significant level, thereby demonstrating over-exploitation of the groundwater aquifer. This has subsequently led to progressive decline in groundwater table in the study area. Efforts should be initiated to tap the surface water by creating storages at suitable sites and artificial recharge practices should be encouraged after identifying suitable recharge zones. Conjunctive use of the surface and groundwater along with water conservation practices and groundwater management measures should be taken up to arrest the progressive decline in groundwater levels and over-exploitation of groundwater aquifer.  相似文献   

15.
The purpose of the study is to demonstrate that cross-correlation analyses can contribute to the artificial recharge study in regional level of shallow aquifer. Correlations between hydrologic time series data were analyzed to identify the hydrogeologic location for potential artificial recharge in district Surat, Gujrat, India. The natural groundwater-level fluctuations and rainfall data were used for the analyses. The effective development of groundwater resources is essential for a country like India. India receives a good amount of average annual rainfall (114?cm) but most of its part goes waste as runoff. Over exploitation of groundwater due to increasing population is an additional cause of water crisis that results in the reduction in per capita availability of water in the country. Artificial recharge is essential for effective development of groundwater resources. An effort has been made to evaluate the suitable recharge zone considering rainfall by arresting runoff to restore groundwater conditions using a statistical technique. Groundwater system in a basaltic terrain where the top weathered regolith forms shallow aquifer the water table variation is directly influenced with temporal rainfall variation. Understanding of this relation is of critical importance to management of groundwater resources. A diagnostic relationship between recharge time series and water level time series is used to serve the purpose to determine the best site for groundwater recharge.  相似文献   

16.
Determining the optimal rates of groundwater extraction for the sustainable use of coastal aquifers is a complex water resources management problem. It necessitates the application of a 3D simulation model for coupled flow and transport simulation together with an optimization algorithm in a linked simulation-optimization framework. The use of numerical models for aquifer simulation within optimization models is constrained by the huge computational burden involved. Approximation surrogates are widely used to replace the numerical simulation model, the widely used surrogate model being Artificial Neural Networks (ANN). This study evaluates genetic programming (GP) as a potential surrogate modeling tool and compares the advantages and disadvantages with the neural network based surrogate modeling approach. Two linked simulation optimization models based on ANN and GP surrogate models are developed to determine the optimal groundwater extraction rates for an illustrative coastal aquifer. The surrogate models are linked to a genetic algorithm for optimization. The optimal solutions obtained using the two approaches are compared and the advantages of GP over the ANN surrogates evaluated.  相似文献   

17.
This paper gives an overview of the geophysico-chemical groundwater conditions in Sri Lanka and the associated contemporary management challenges. Groundwater is extensively used in Sri Lanka today, for agriculture, domestic use and industry/tourism. Groundwater access, availability and vulnerability are governed by six major types of aquifer systems of which the most prevalent is the regolith aquifers in the central hard rock areas of the island. Uncontrolled groundwater use and contamination or natural poor quality are leading to access limitations and health concerns. The tsunami severely affected groundwater in the coastal areas and functioned as a wake-up call to further emphasize the importance of groundwater for life-supporting functions. Despite an emerging awareness, groundwater management is in its infancy, with the attitude of groundwater development still not converted into an approach of active management. The role of groundwater in achieving sustainable development and in the development of appropriate water management institutions needs to be highlighted and specifically addressed in policy discussions.  相似文献   

18.
In Saudi Arabia, the recharge to local and regional aquifers is mostly indirect, very limited and insignificant, especially with low annual precipitation. Most of the stored groundwater in local and regional aquifers is non-renewable fossil water. With rapid socio-economic developments and increasing population coupled with agricultural and industrial growth in the Kingdom, especially after the large increase in oil revenues after 1974, the water demands have increased drastically. By understanding the aquifer features, the country followed a planned approach based on controlling aquifer development and demand management to use its groundwater resources. The socio-economic developments in rural areas have been very pronounced. Corrective demand management measures including reduction in cultivated areas and modification in agricultural support policies in addition to the augmentation of water supplies by the reuse of treated wastewater have reduced the stress on groundwater. The establishment of a special Ministry for water and the adoption of a national water planning approach and the use of an integrated water resources management tool are expected to contribute effectively to the achievement of sustainable groundwater resources and the national interest of the country.  相似文献   

19.
The provision of adequate water supply and sanitation to the rapidly growing urban populations is increasingly becoming a problem for governments throughout the world. The continuing expansion of the numbers of people in cities who need water and sanitation services form a continuous pressure to either invest in additional production capacity or to stretch the available supplies to serve more people. Due to rapid increase in population growth in the Yobe State north of Nigeria, there is a shortage in the water supply to Damaturu city the capital of the state and surrounding villages. At the present the total water supply is about 10,000 m3/day abstracted form the shallow alluvial groundwater aquifer using 29 production wells. Due to the expected increase in water demand and the limited potentiality of shallow aquifer system, other deep aquifers were explored and investigated to evaluate their potentiality for future water demand. Vertical Electrical Sounding Method was used for the geophysical survey of the study area. Groundwater flow model was developed and calibrated against the historical information. Three wellfields were designed to provide Damaturu city and surrounding villages with the required water. The calibrated model has been used to evaluate the aquifer potentiality and the effect of future withdrawals on the deep aquifer system. It was found that the aquifer system within the study area consists of two main layers. The upper layer is the Chad formation comprises an alluvial sand and gravel with intercalation of thin sility clay layers. The second layer is Keri-Keri formation consists of sandstone formation which is not explored before. During this study the Kerri-Kerri aquifer system was investigated as an alternative source for groundwater for future demand. The study presents an integrated groundwater resources management strategy for present and future water supply for rural communities.  相似文献   

20.
The consequences of unsustainable use of groundwater are becoming increasingly evident worldwide, particularly in developing nations. Groundwater management is a serious problem in many parts of the world. The prime concern is how to achieve groundwater sustainability. Artificial recharge techniques coupled with water harvesting hold a great promise for groundwater sustainability. The main intent of this paper is to highlight salient cost-effective and easy-to-use methods for augmenting groundwater resources in the alluvial hydrogeologic setting. Based on the intensive field investigation in a groundwater basin of Japan, three low-cost and easy-to-implement recharge techniques are suggested for alluvial aquifer systems, viz., augmentation of river flow, recharge through irrigation/drainage canals, and recharge from paddy fields. The source of recharge water for these recharge techniques is surface water supply. The efficacy of these methods or approaches has been demonstrated. It is emphasized that such cost-effective methods of groundwater recharge are key to sustainable groundwater management in both developing and developed countries. These methods must not be overlooked in the midst of sophisticated and highly expensive methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号