首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reducing the energy consumption of sensor nodes and prolonging the life of the network is the central topic in the research of wireless sensor network (WSN) protocol. The low-energy adaptive clustering hierarchy (LEACH) is one of the hierarchical routing protocols designed for communication in WSNs. LEACH is clustering based protocol that utilizes randomized rotation of local cluster-heads to evenly distribute the energy load among the sensors in the network. But LEACH is based on the assumption that each sensor nodes contain equal amount of energy which is not valid in real scenarios. A developed routing protocol named as DL-LEACH is proposed. The DL-LEACH protocol cluster head election considers residual energy of nodes, distance from node to the base station and neighbor nodes, which makes cluster head election reasonable and node energy consumption balance. The simulation results of proposed protocols are compared for its network life time in MATLAB with LEACH protocol. The DL-LEACH is prolong the network life cycle by 75 % than LEACH.  相似文献   

2.
Radhika  M.  Sivakumar  P. 《Wireless Networks》2021,27(1):27-40

This article presents the design, analyses and implementation of the novel routing protocol for energy optimization based on LEACH for WSN. Network Lifetime is the major problem in various routing protocols used in WSN. In order to overcome that problem, our proposed routing protocol is developed, which is a combination of Micro Genetic algorithm with LEACH protocol. Our proposed µGA-LEACH protocol, strengthen the cluster head (CH) selection and also reduce the energy consumption of the network when compared to existing protocols. This paper shows the improvement of network lifetime and energy consumption with the optimal CH selection based on a micro genetic algorithm and also compared the results with an existing hierarchical routing protocol like LEACH, LEACH-C, LEACH GA and GADA LEACH routing protocol with various packet sizes, and initial energy.

  相似文献   

3.
孙振  王凯  王亚刚 《电子科技》2019,32(8):27-32
为平衡无线传感器网络中的簇头负载并进一步降低多跳传输能耗,文中提出了一种改进的基于时间竞争成簇的路由算法。该算法通过限制近基站节点成簇入簇,以防止近基站节点成簇入簇的节能收益无法补偿成簇入簇能耗;利用基站广播公共信息和基于时间机制成簇,以减少节点基本信息交换能耗;通过候选簇头中继来平衡簇头负载。候选簇头的评价函数综合考虑了剩余能量和最优跳数的理想路径,以期在保持中继负载平衡的基础上尽量降低多跳能耗。仿真结果显示,该算法较LEACH和DEBUC算法延长了以30%节点死亡为网络失效的网络生存周期,表明该算法在降低节点能耗和平衡负载方面是有效的。  相似文献   

4.
Non‐uniform energy consumption during operation of a cluster‐based routing protocol for large‐scale wireless sensor networks (WSN) is major area of concern. Unbalanced energy consumption in the wireless network results in early node death and reduces the network lifetime. This is because nodes near the sink are overloaded in terms of data traffic compared with the far away nodes resulting in node deaths. In this work, a novel residual energy–based distributed clustering and routing (REDCR) protocol has been proposed, which allows multi‐hop communication based on cuckoo‐search (CS) algorithm and low‐energy adaptive‐clustering–hierarchy (LEACH) protocol. LEACH protocol allows choice of possible cluster heads by rotation at every round of data transmission by a newly developed objective function based on residual energy of the nodes. The information about the location and energy of the nodes is forwarded to the sink node where CS algorithm is implemented to choose optimal number of cluster heads and their positions in the network. This approach helps in uniform distribution of the cluster heads throughout the network and enhances the network stability. Several case studies have been performed by varying the position of the base stations and by changing the number of nodes in the area of application. The proposed REDCR protocol shows significant improvement by an average of 15% for network throughput, 25% for network scalability, 30% for network stability, 33% for residual energy conservation, and 60% for network lifetime proving this approach to be more acceptable one in near future.  相似文献   

5.
In wireless sensor network, a large number of sensor nodes are distributed to cover a certain area. Sensor node is little in size with restricted processing power, memory, and limited battery life. Because of restricted battery power, wireless sensor network needs to broaden the system lifetime by reducing the energy consumption. A clustering‐based protocols adapt the use of energy by giving a balance to all nodes to become a cluster head. In this paper, we concentrate on a recent hierarchical routing protocols, which are depending on LEACH protocol to enhance its performance and increase the lifetime of wireless sensor network. So our enhanced protocol called Node Ranked–LEACH is proposed. Our proposed protocol improves the total network lifetime based on node rank algorithm. Node rank algorithm depends on both path cost and number of links between nodes to select the cluster head of each cluster. This enhancement reflects the real weight of specific node to success and can be represented as a cluster head. The proposed algorithm overcomes the random process selection, which leads to unexpected fail for some cluster heads in other LEACH versions, and it gives a good performance in the network lifetime and energy consumption comparing with previous version of LEACH protocols.  相似文献   

6.
一种无线传感器网络分簇路由算法研究   总被引:2,自引:1,他引:1  
刘琼  成运 《现代电子技术》2010,33(10):162-164,174
在分析LEACH协议的基础上提出一种基于能量和距离的多跳路由算法(CAED)。由基站依据节点剩余能量和簇头与基站的距离分别选出二层簇头,簇内节点利用单跳和多跳模式与簇头进行通信。仿真实验表明,新算法有效地平衡了节点的能量消耗,并显著地延长了网络的生命周期。  相似文献   

7.
LEACH是一种低功耗自适应按簇分层路由算法.为了降低节点能耗,在LEACH协议的基础上提出了在选举簇头时,改变阈值T(n)的大小以降低节点成为簇头的概率,从而节省网络因分簇而消耗的能量.同时又提出了一种基于节点剩余能量的二层簇头的算法,该算法能使节点减少将冗余信息传输到基站,从而达到降低节点消耗能量的目的.通过实验仿真,表明这些方法能使网络节点能量的消耗减少,达到了延长网络生命周期的目的.  相似文献   

8.
The improvement of sensor networks’ lifetime has been a major research challenge in recent years. This is because sensor nodes are battery powered and may be difficult to replace when deployed. Low energy adaptive clustering hierarchical (LEACH) routing protocol was proposed to prolong sensor nodes lifetime by dividing the network into clusters. In each cluster, a cluster head (CH) node receives and aggregates data from other nodes. However, CH nodes in LEACH are randomly elected which leads to a rapid loss of network energy. This energy loss occurs when the CH has a low energy level or when it is far from the BS. LEACH with two level cluster head (LEACH-TLCH) protocol deploys a secondary cluster head (2CH) to relieve the cluster head burden in these circumstances. However, in LEACH-TLCH the optimal distance of CH to base station (BS), and the choicest CH energy level for the 2CH to be deployed for achieving an optimal network lifetime was not considered. After a survey of related literature, we improved on LEACH-TLCH by investigating the conditions set to deploy the 2CH for an optimal network lifetime. Experiments were conducted to indicate how the 2CH impacts on the network at different CH energy levels and (or) CH distance to BS. This, is referred to as factor-based LEACH (FLEACH). Investigations in FLEACH show that as CHs gets farther from the BS, the use of a 2CH extends the network lifetime. Similarly, an increased lifetime also results as the CH energy decreases when the 2CH is deployed. We further propose FLEACH-E which uses a deterministic CH selection with the deployment of 2CH from the outset of network operation. Results show an improved performance over existing state-of-the-art homogeneous routing protocols.  相似文献   

9.
Clustering has been well known as an effective way to reduce energy dissipation and prolong network lifetime in wireless sensor networks. Recently, game theory has been used to model clustering problem. Each node is modeled as a player which can selfishly choose its own strategies to be a cluster head (CH) or not. And by playing a localized clustering game, it gets an equilibrium probability to be a CH that makes its payoff keep equilibrium. In this paper, based on game theory, we present a clustering protocol named Hybrid, Game Theory based and Distributed clustering. In our protocol, we specifically define the payoff for each node when choosing different strategies, where both node degree and distance to base station are considered. Under this definition, each node gets its equilibrium probability by playing the game. And it decides whether to be a CH based on this equilibrium probability that can achieve a good trade-off between minimizing energy dissipation and providing the required services effectively. Moreover, an iterative algorithm is proposed to select the final CHs from the potential CHs according to a hybrid of residual energy and the number of neighboring potential CHs. Our iterative algorithm can balance the energy consumption among nodes and avoid the case that more than one CH occurs in a close proximity. And we prove it terminates in finite iterations. Simulation results show that our protocol outperforms LEACH, CROSS and LGCA in terms of network lifetime.  相似文献   

10.
Energy consumption of sensor nodes is one of the crucial issues in prolonging the lifetime of wireless sensor networks. One of the methods that can improve the utilization of sensor nodes batteries is the clustering method. In this paper, we propose a green clustering protocol for mobile sensor networks using particle swarm optimization (PSO) algorithm. We define a new fitness function that can optimize the energy consumption of the whole network and minimize the relative distance between cluster heads and their respective member nodes. We also take into account the mobility factor when defining the cluster membership, so that the sensor nodes can join the cluster that has the similar mobility pattern. The performance of the proposed protocol is compared with well-known clustering protocols developed for wireless sensor networks such as LEACH (low-energy adaptive clustering hierarchy) and protocols designed for sensor networks with mobile nodes called CM-IR (clustering mobility-invalid round). In addition, we also modify the improved version of LEACH called MLEACH-C, so that it is applicable to the mobile sensor nodes environment. Simulation results demonstrate that the proposed protocol using PSO algorithm can improve the energy consumption of the network, achieve better network lifetime, and increase the data delivered at the base station.  相似文献   

11.
在低功耗自适应分簇(LEACH,Low Energy Adaptive Clustering Hierarch)算法中,由于每一轮循环都要重新构造簇,距离较远的簇头节点可能会因长距离发送数据而过早耗尽自身能量,能量较低的节点当选为簇头节点时将会加速该节点的死亡,影响整个网络的生命周期。针对LEACH算法分簇机制中存在的不足,提出了一种改进的路由算法。仿真结果表明,改进算法通过考虑节点的剩余能量与固定分簇的方法,有效的改善了网络能量均衡,提高了网络生存时间。  相似文献   

12.
In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Ant-colony algorithm, this paper proposes the wireless sensor network routing algorithm based on LEACH. During the construction of sensor network clusters, to avoid the node premature death because of the energy consumption, only the nodes whose residual energy is higher than the average energy can be chosen as the cluster heads. The method of repeated division is used to divide the clusters in sensor networks so that the numbers of the nodes in each cluster are balanced. The basic thought of ant-colony algorithm is adopted to realize the data routing between the cluster heads and sink nodes, and the maintenance of routing. The analysis and simulation showed that the proposed routing protocol not only can reduce the energy consumption, balance the energy consumption between nodes, but also prolong the network lifetime.  相似文献   

13.
Reducing energy consumption and increasing network lifetime are the major concerns in Wireless Sensor Network (WSN). Increase in network lifetime reduces the frequency of recharging and replacing batteries of the sensor node. The key factors influencing energy consumption are distance and number of bits transmitted inside the network. The problem of energy hole and hotspot inside the network make neighbouring nodes unusable even if the node is efficient for data transmission. Energy Efficient Energy Hole Repelling (EEEHR) routing algorithm is developed to solve the problem. Smaller clusters are formed near the sink and clusters of larger size are made with nodes far from the sink. This methodology promotes equal sharing of load repelling energy hole and hotspot issues. The opportunity of being a Cluster Head (CH) is given to a node with high residual energy, very low intra cluster distance in case of nodes far away from the sink and very low CH to sink distance for the nodes one hop from the sink. The proposed algorithm is compared with LEACH, LEACH-C and SEP routing protocol to prove its novel working. The proposed EEEHR routing algorithm provides improved lifetime, throughput and less packet drop. The proposed algorithm also reduces energy hole and hotspot problem in the network.  相似文献   

14.
无线传感器网络中LEACH协议是一种典型的能有效延长网络生命周期的节能通信协议。因为其优秀的节能效果和其简单的规程得到了广泛的认可。但是LEACH簇头算法存在簇头开销大、簇头没有确定的数量和位置等不足。而在成簇后的稳定阶段,节点通过一跳通信将数据传送给簇头,簇头也通过一跳通信将聚合后的数据传送给基站,这样会造成簇头节点...  相似文献   

15.
朱明  刘漫丹 《电视技术》2016,40(10):71-76
LEACH协议是无线传感器网络中最流行的分簇路由协议之一.针对LEACH算法簇分布不均匀以及网络能耗不均衡等问题提出了一种高效节能多跳路由算法.在簇建立阶段,新算法根据网络模型计算出最优簇头间距值,调整节点通信半径以控制簇的大小,形成合理网络拓扑结构;在数据传输阶段,簇头与基站之间采用多跳的通信方式,降低了节点能耗.在TinyOS操作系统下,使用nesC语言设计实现了LEACH-EEMH算法.基于TOSSIM平台的仿真结果表明,新算法较LEACH算法在均衡网络能耗、延长网络寿命方面具有显著优势.  相似文献   

16.
在交通路灯监控系统中为节省网络节点能耗和降低数据传输时延,提出一种无线传感网链状路由算法(CRASMS)。该算法根据节点和监控区域的信息将监控区域分成若干个簇区域,在每一个簇区域中依次循环选择某个节点为簇头节点,通过簇头节点和传感节点的通信建立簇内星型网络,最终簇头节点接收传感节点数据,采用数据融合算法降低数据冗余,通过簇头节点间的多跳路由将数据传输到Sink节点并将用户端的指令传输到被控节点。仿真结果表明:CRASMS算法保持了PEGASIS算法在节点能耗方面和LEACH算法在传输时延方面的优点,克服了PEGASIS 算法在传输时延方面和LEACH算法在节点能耗方面的不足,将网络平均节点能耗和平均数据传输时延保持在较低水平。在一定的条件下,CRASMS算法比LEACH和PEGASIS算法更优。  相似文献   

17.
Energy-constrained wireless sensor networks (WSNs) have been deployed widely for monitoring and surveillance purposes. Since sensor nodes (SNs) have significant power constraints (battery life), energy-efficient protocols must be employed to prolong the network lifetime. In this paper, we propose an energy-efficient protocol which provides a new way of creating distributed clusters. This protocol is a modified version of Low Energy Adaptive Clustering Hierarchy (LEACH) protocol. The experimental results show that our protocol that takes into account both the residual energy at each SN and the distance between the SNs outperforms LEACH protocol in terms of first node death time and average residual energy.  相似文献   

18.
无线传感器网络(Wireless Sensor Networks,WSN)的路由协议是无线传感器网络领域中的一个研究热点.针对LEACH协议的不足,提出一种基于自适应t分布改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)的改进LEACH协议(LEACH?ISSA),以解决...  相似文献   

19.
一种基于LEACH协议的改进算法   总被引:5,自引:0,他引:5       下载免费PDF全文
吕涛  朱清新  张路桥 《电子学报》2011,39(6):1405-1409
作为能量有效、基于层次结构的路由协议的典型代表,LEACH协议存在的不足表现为网络中会出现极大簇和极小簇并存;当节点能量不同时簇头选择不合理;在簇头死亡后簇内节点仍会消耗能量.本文基于LEACH提出了一种改进算法,使用引入簇成员数门限和合并极小簇的方法避免极大簇和极小簇同时存在;通过对簇头能量消耗的估计,在簇头能量耗尽...  相似文献   

20.

Wireless sensor networks (WSN) consists of numerous number of nodes fitted with energy reserves to collect large amount of data from the environment on which it is deployed. Energy conservation has huge importance in wsn since it is virtually impossible to recharge the nodes in their remote deployment. Forwarding the collected data from nodes to the base station requires considerable amount of energy. Hence efficient routing protocols should be used in forwarding the data to the base station in order to minimize the energy consumption thereby increasing the life-time of the network. In this proposed routing protocol, we consider a hierarchical routing architecture in which nodes in the outer-level forwards data to the inner-level nodes. Here we optimized the routing path using ant-colonies where data moves along minimal congested path. Further, when ant-colony optimization is used, certain cluster-head nodes may get overloaded with data forwarding resulting in early death due to lack of energy. To overcome this anomaly, we estimated the amount of data a neighboring Cluster-head can forward based on their residual energy. We compared the energy consumption results of this proposed Routing using Ant Colony Optimization (RACO) with other existing clustering protocols and found that this system conserves more energy thereby increasing lifetime of the network.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号