首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Polypyrrole/multi-walled carbon nanotubes (PPy/MWCNT) and its carboxylic functionalized (PPy/MWCNT-COO) composite films were successfully electropolymerized by cyclic voltammetry as protective coating against corrosion on 60Cu–40Zn brass alloy surface. It yielded to strongly adherent and smooth nanocomposite films. Kinetics of the corrosion protection was investigated in 3.5 wt% NaCl solutions by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests. The results showed that the presence of MWCNT in PPy coat considerably reduces the corrosion rate of 60Cu–40Zn brass alloy. The enhanced inhibition is most likely due to interaction between MWCNT and PPy. This in turn, improves the alloy passivation improvement and alters the permselectivity of the coating from anionic selectivity to the cationic selectivity. Moreover, PPy/MWCNT-COO functionalized nanocomposite provided higher corrosion resistance coating than PPy/MWCNT alone.  相似文献   

2.
The electrosynthesis of polypyrrole (PPy) on copper and brass (Cu–Zn alloy) electrodes was performed by anodic oxidation of pyrrole in a sodium tartrate (C4H4Na2O6 0.2 M) aqueous solution. The tartrate counter-ions slow the dissolution of the working electrode by leading to formation of a passivation layer on its surface, and pyrrole electropolymerization takes place. Strongly adherent and homogeneous polypyrrole films were electrodeposited on Cu and Cu–Zn alloy electrodes using different electrochemical techniques, such as potentiodynamic, galvanostatic and potentiostatic modes. The current densities of electropolymerization on brass are generally greater than those observed on copper. The corrosion behaviour of copper-coated electrodes, electrochemically modified by PPy films, was estimated by DC polarization and weight loss at different current densities in 0.1 M HCl solution. The synthesized polypyrrole films were characterised by several microscopic and spectroscopic techniques such as scanning electron microscopy, X-ray photo electron spectroscopy, Fourier transform infrared and Raman analysis. Galvanostatically deposited PPy films are shown to be an alternative to common black-nickel or black-chromium as a decorative top-coating.  相似文献   

3.
Electrochemical synthesis of polypyrrole (PPy) and top coat of poly(5-amino-1-naphthol) (PANAP) on PPy films from oxalic acid solution was achieved on mild steel (MS) by cyclic voltammetry technique. The morphology and the structure of the films were investigated by scanning electron microscopy (SEM). The corrosion performance of this multilayer coating and single PPy coating were investigated in 3.5% NaCl solution by using open circuit potential (Eocp)–time curves, polarization curves and electrochemical impedance spectroscopy (EIS). It was found that the multilayer PPy/PANAP coating could provide much better protection than single PPy coating for corrosion of MS. It was observed that corrosion performance of coatings was increasing with immersion period. This was explained by auto-undoping properties of PPy coatings during immersion in corrosive solution. The improved corrosion performance in the presence of PANAP top coat on PPy was explained by increase in barrier effect of bilayer films.  相似文献   

4.
Polyaniline/polypyrrole (PAni/PPy), polyaniline-phosphotungstate/polypyrrole (PAni-PW12/PPy) and PAni/PPy-PW12 have been successfully electrodeposited on mild steel (MS) by cyclic voltammetry in aqueous oxalic acid solutions. It was found that the incorporation of PW12 enhanced the corrosion resistance of PAni/PPy coating. Moreover, in comparison to PAni-PW12/PPy, PAni/PPy-PW12 coating exhibited better corrosion resistance for mild steel. After immersion of 36 h in 0.1 M HCl, for instance, the polarization resistance of PAni/PPy-PW12 coating reached 1695 Ω cm2, more than those of both PAni/PPy and PAni-PW12/PPy.  相似文献   

5.
A simple fabrication method for a polypyrrole (PPy)/silica nanocomposite with a cratered surface using templated synthesis is described. This nanocomposite was prepared by a modified silica-templated oxidation/polymerization of pyrrole in the presence of FeCl3 oxidant and was characterized by various methods, including Fourier-transform infrared spectroscopy; BET specific surface area; and transmission electron microscopy (TEM). The PPy/silica nanocomposite with surface craters looked like a golf ball in TEM images. The highest BET surface area of PPy/silica nanocomposite with craters was 306 m2/g at 4 mL silica sol solution (Ludox SM-30) loading through the fabrication process, whereas a PPy/silica nanocomposite without craters had a specific surface area of only 85 m2/g with no Ludox SM-30 introduced. In addition, the material's adsorption capacity for heavy metal ions (Hg2+, Ag+, and Pb2+) and its recycling mechanism were investigated.  相似文献   

6.
The dependence of the corrosion-inhibiting properties of zinc-filled organic coatings on the nature of the conducting polymers and conducting pigments added and on the pigment particles’ surface coating with conducting polymer layers were investigated. The following materials were selected to examine the corrosion-inhibiting properties of the conducting polymers: polyaniline phosphate (PANI), polypyrrole (PPy), natural graphite, and carbon nanotubes. Conducting pigment combinations for application in coating materials were formulated by applying pigment volume concentrations (PVC) of 0.3%, 0.5% and 1%, which were completed with Zn dust to obtain pigment volume concentrations/critical pigment volume concentrations (PVC/CPVC) = 0.64. Such conducting pigment/zinc dust combinations represented corrosion inhibitors to be used as ingredients in protective coatings. Solvent-based 2K epoxy resin based coating materials containing the corrosion inhibitors so formulated were prepared to examine their anticorrosion properties. The pigmented coatings were subjected to laboratory corrosion tests in simulated corrosion atmospheres and to standardized mechanical resistance tests. The protective coatings so obtained exhibited a higher efficiency than coating materials containing zinc dust alone. The coating material containing carbon nanotubes at PVC = 1% and the coating material containing graphite coated with polypyrrole (C/PPy) at PVC = 0.5% emerged as the best zinc-filled coating materials with respect to their corrosion-inhibiting efficiency. Treatment with the conducting polymers had a beneficial effect on the coating materials’ mechanical properties.  相似文献   

7.
Composite films consisting of polypyrrole (PPy) and graphene oxide (GO) were electrochemically synthesized by electrooxidation of 0.1 M pyrrole in aqueous solution containing appropriate amounts of GO. Simultaneous chronoamperometric growth profiles and frequency changes on a quartz crystal microbalance showed that the anionic GO was incorporated in the growing GO/PPy composite to maintain its electrical neutrality. Subsequently, the GO was reduced electrochemically to form a reduced GO/PPy (RGO/PPy) composite by cyclic voltammetry. Specific capacitances estimated from galvanostatic discharge curves in 1 M H2SO4 at a current density of 1 A g?1 indicated that values for the RGO/PPy composite were larger than those of a pristine PPy film and the GO/PPy composite. In the case of 6 mg mL?1 GO for the preparation of GO/PPy, a high specific capacitance of 424 F g?1 obtained at the electrochemically prepared RGO/PPy composite indicated its potential for use as an electrode material for supercapacitors.  相似文献   

8.
Polypyrrole (PPy) film was synthesized on nickel-plated copper electrodes, from monomer containing 0.2 M ammonium oxalate solution. The thickness of galvanostatically deposited nickel layer was 2 μm, while 0.80 μm thick polymer film was obtained by using cyclic voltammetry technique. The protective behavior of PPy modified nickel coating has been investigated, against copper corrosion in 3.5% NaCl solution. For this aim, ac impedance spectroscopy, the anodic polarization curves and open circuit potential–time (Eocpt) diagrams were utilized. It was shown that PPy modified nickel coating could provide important protection to copper for considerable periods, in such aggressive medium. The thin polymer film constituted a physical barrier on top of nickel layer against the attack of corrosive environment for a certain period. Also, it was found that the thin PPy film could increase the protection efficiency and lifetime of nickel coating, by its catalytic behavior on formation of NiO layer.  相似文献   

9.
A study on the distribution of polarons vs. bipolarons as charge carriers in polypyrrole thin films doped with different dopant anions (chloride, p-toluenesulfonate and anthraquinone-2-sulfonate) is presented in this paper. The polypyrrole thin films synthesized by oxidative chemical polymerization have comparable thickness in the range of 80–100 nm. However, with the variation of the dopant anion, the conductivity of the polypyrrole thin films can differ by three orders of magnitude. The conductivity of polypyrrole thin films doped with chloride, p-toluenesulfonate and anthraquinone-2-sulfonate is 0.64 S/cm, 7.1 S/cm and 120 S/cm, respectively. The Raman spectroscopy and electron spin resonance (ESR) spectroscopy results show that (i) both polarons and bipolarons are present in the three types of polypyrrole thin films and (ii) the distribution of polarons vs. bipolarons as charge carriers in polypyrrole varies with the dopant anion used. The overall study reveals that the charge carriers in the anthraquinone-2-sulfonate-doped polypyrrole thin film are mainly spinless bipolarons, whereas the charge carriers in the chloride-doped polypyrrole thin film are dominated by paramagnetic polarons.  相似文献   

10.
The aim of this research is to investigate sorption characteristics of polyaniline/polypyrrole copolymer nanofibers (PANI/PPy copolymer nanofibers) for the removal of Co(II) ions from aqueous solution. The adsorbent is characterized using FE-SEM, TEM, FTIR, TGA, DSC and BET surface area. The sorption of Co(II) ions by batch method is applied and the optimum conditions are investigated. In optimum condition, removal efficiency was 99.68% for 100 mg L−1 Co(II) solution. It is found that temperature has a positive effect on the removal efficiency. It can be concluded that PANI/PPy copolymer nanofibers are potentially able to removal of Co(II) ions from aqueous solutions.  相似文献   

11.
Polycarbazole (PCz), polycarbazole/nanoclay and polycarbazole/Zn-nanocomposites were chemically and electrochemically synthesized on a stainless steel (SS304) electrode. The modified electrodes were characterized by electrochemical methods (CV and chronoamperometry), Fourier transform infrared spectroscopy (FTIR)-attenuated transmission reflectance (ATR), scanning electron microscopy (SEM)-energy dispersive X-ray analysis (EDX), four point probe, electrochemical impedance spectroscopy (EIS), and equivalent circuit model of Rs(Qc(Rc(QpRct))). The electrochemical behavior of the modified films on SS304 was assessed by open circuit potential monitoring, potentiodynamic polarization and EIS measurements to test the corrosion protection efficiency against 3.5% NaCl solution. PCz, PCz/nanoclay and PCz/nanoZn films obtained by chemical method coated on SS304 electrode exhibited better corrosion protection performance compared to the films obtained by the electrochemical method. This result may be attributed to the effective formation of a thin and protective layer. The highest protection efficiency (PE = 99.81%) was obtained for chemically synthesized PCz films.  相似文献   

12.
《Ceramics International》2015,41(7):8299-8304
In this study, Cu2ZnSnS4 (CZTS) thin films were deposited by spray pyrolysis technique at constant substrate temperature. The effects of the copper concentration on the structural, morphological and optical properties of the films were investigated. The copper concentration was varied from 0.15 to 0.25 M in the steps of 0.05 M. The structural studies revealed that the Cu poor film shows low intense peaks, but as Cu concentration increases a relatively more intense and sharper diffraction peaks (112), (200), (220), and (312) of the kesterite crystal structure were observed. Raman spectroscopy analysis confirmed the formation of phase-pure CZTS films. From the morphological studies, it is found that the grain size increased as the Cu concentration increases from 0.15 to 0.25 M. The optical band-gap values were estimated to be 1.61, 1.52 and 1.45 eV for copper concentration 0.15, 0.20 and 0.25 M, respectively. Photoelectrochemical cells using films of different copper concentrations were fabricated and the best cell exhibited an efficiency of 1.09% for 0.25 M of copper concentration.  相似文献   

13.
Niobium pentaoxide (Nb2O5) thin films were deposited on etched aluminum foils by complexation–precipitation followed by heat treatment. Then the Al2O3–Nb2O5 (Al–Nb) composite oxide films were formed by anodizing to increase the capacitance of anodized aluminum foils which are used in aluminum electrolytic capacitors. The composition and structure of niobium deposition layer were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), and the microstructures and dielectric properties of anodic oxide films were investigated by scanning electron microscope (SEM) and electrochemical impedance spectroscopy (EIS) respectively. The results show that the niobium deposition layer after heat treatment existed in the form of crystalline Nb2O5. The aluminum foil with Nb2O5 coating can be anodized with higher efficiency and energy saving. Compared with that of normal anodized aluminum foils, the effective area of the anodized aluminum foils with Al–Nb composite oxide films had no apparent change. The specimens with Al–Nb composite oxide films anodized at 30 V exhibited about 20% higher specific capacitance than that of those with pure aluminum oxide films. It suggests that the method of complexation–precipitation is an effective way to increase the specific capacitance of anodized aluminum foils used in aluminum electrolytic capacitors.  相似文献   

14.
Electrochemical synthesis of polypyrrole (PPy) on copper electrodes is researched using different techniques. The synthesised films are found to be very adherent and homogeneous. The corrosion behaviour of Cu/PPy is assessed in a 3.5% NaCl solution using polarisation curves and open circuit potential-time. The relationship between porosity and anticorrosive properties is demonstrated. The chronopotentiometry technique is seen to be the best to produce a good coating that yields good protection against copper corrosion for long immersion times.  相似文献   

15.
《Ceramics International》2015,41(4):5863-5871
The relationship between structural behaviour of sputtered TiC/amorphous C (TiC/a:C) thin films and corrosion properties was measured in three various pH solutions (0.5 M NaCl (pH=6); 0.1 M HCl (pH=1); and 0.1 M NaOH (pH=13)). The ~400 nm thick nanocomposites were deposited by DC magnetron sputtering on different substrates (Ti6Al4V alloy and CoCrMo alloy) in argon at 25 °C and 0.25 Pa with 150 W input power of carbon target and 50 W input power of titanium target. The structure and composition of nanocomposites were investigated by Transmission and Scanning Electron Microscopy. In both samples the structural investigations confirmed columnar structure of TiC/a:C films with 25–50 nm sized cubic TiC. These columns were separated by 2–3 nm thin amorphous carbon layers. TiC/a:C /Ti6Al4V alloy implant material showed better corrosion resistance than the TiC/a:C/CoCrMo alloy in 0.5 M NaCl solution based on results of the Electrochemical Impedance Spectroscopy. For both samples, the 0.1 M NaOH solution was the most corrosive media.  相似文献   

16.
The effect of titanium (Ti) added to the top layer of an aluminum (Al)/iron (Fe)/Al (bottom) sandwich catalytic substrate was studied. The Ti caused a significant lengthening in the single-wall carbon nanotube forest produced by chemical vapor deposition (CVD). In general, particles of iron oxide on the Al/Fe/Al catalytic substrate are formed by exposure to the atmosphere during deposition process of the substrate. The particles of iron oxide are metalized during pretreatment under a reductive gas before the growth of the nanotubes with nano-sized dispersion stabilized. On this process, the metallization and the stabilization of nano-sized iron oxide particles occur on the basis of the oxygen affinity in the top aluminum oxide layer, with the ionization tendency Al > Fe. It is thought that the addition of Ti increases the oxygen affinity of the catalytic substrate, since Ti has a stronger ionization tendency than Al. After optimizing the quantity of Ti added to the top layer, we successfully fabricated a millimeter-long, small-diameter, single-wall carbon nanotube forest.  相似文献   

17.
In this work we present a computational method based on molecular mechanics (MM) and dynamics (MD), to predict mechanical properties of polypyrrole (PPy)/polyaminobenzene sulfonic acid-functionalized single-walled carbon nanotubes (CNT-PABS) and PPy/carboxylic acid-functionalized single-walled carbon nanotubes (CNT-CA) composites. Furthermore, experiments were carried out to assess the anticorrosive features of the PPy film and CNT-PABS and CNT-CA PPy reinforced composite coatings. Computational bulk models of PPy/CNT-PABS and PPy/CNT-CA were implemented at atomistic scale and composite coatings were grown in situ onto carbon steel (OL 48-50) electrodes. PPy, PPy/CNT-PABS and PPy/CNT-CA computational models and films were investigated concerning mechanical properties by using computational tools. The obtained films were assessed experimentally as anticorrosive materials using potentiodynamic measurements, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results clearly confirmed that the CNT-PABS and CNT-CA are properly dispersed in the composite coatings and have beneficial effect on mechanical integrity. Moreover, the anticorrosion protecting ability of the composite coatings is significantly higher than the one characteristic to pure PPy. The Young's moduli generally increased with increasing of CNT content and values ranged from 2.67 GPa in the case of pure PPy to 4.15–4.61 GPa in the case of PPy/CNT-PABS composite system.In agreement with earlier results from the literature for conducting polymer organic coatings, the higher conductivity of material leads to a more efficient anticorrosion protection capability, our results exhibited an enhance of conducting features even for very low mass of CNT-PABS or CNT-CA loaded in composites coatings therefore, an improvement of anticorrosion protecting ability.  相似文献   

18.
Electrochemically synthesized polypyrrole coating was modified with very thin graphite layer and top coated with another polypyrrole film. The corrosion behaviour of this coating has been investigated in aqueous sodium chloride solution. The synthesis of polypyrrole coatings was carried out by cyclic voltammetry technique, from aqueous oxalic acid solution. Electrochemical impedance spectroscopy and potentiodynamic measurements were used for corrosion tests. The cyclic voltammograms obtained in oxalic acid solution and the polarisation curves obtained in sodium chloride solution showed that the stability of coating was improved significantly by graphite layer. The impedance spectra also showed that the corrosion process was controlled by the diffusion rate along the coating, even after 96 h immersion period. The Warburg coefficient values were calculated and used to evaluate the barrier property of coating with time. It was shown that the water up taking process was slowed down by the hydrophobic nature of the graphite layer sandwiched between the two polypyrrole films.  相似文献   

19.
Electrochemical synthesis of poly(N-methylpyrrole) films on copper electrodes from an aqueous oxalic acid has been achieved. A potential higher than 2 V (SCE) was needed to generate the polymer, for this reason, the polymer was in the overoxidized state. The inhibiting corrosion properties of this coating on copper were investigated for the first time in aqueous 0.1 M sodium chloride solution using potentiodynamic polarization, Tafel analyses, open-circuit potential and electrochemical impedance spectroscopy. Corrosion protection properties comparable to those of polypyrrole (PPy) films were observed for these films. A physical barrier effect is the most likely protection mechanism.  相似文献   

20.
The electrochemical characteristics, adhesion and morphology of methacryloxypropyltrimethoxysilane (MAPT) films on aluminium were investigated during exposure to 3 wt.% NaCl. The MAPT films were deposited on aluminium surface from 2 to 5 vol.% methacryloxypropyltrimethoxysilane solutions, with the aim to investigate the influence of deposition parameters (silane solution concentration and curing time) on electrochemical characteristics, adhesion and morphology of MAPT films on aluminium.Using electrochemical impedance spectroscopy (EIS), potential–time measurements, adhesion measurements and optical microscopy coupled with image analysis, it was shown that films deposited from 5 vol.% solution exhibited better corrosion stability and adhesion, as well as lower porosity comparing to 2 vol.% solution and improved the corrosion protection of aluminium substrate, while the curing time had no influence on these characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号