首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
为了研究纱线结构形貌对织物复合材料摩擦学性能的影响,选用对位芳纶纤维,制备成3种具有不同结构形貌的芳纶纱,分别为长丝平行纱、长丝加捻纱和短纤维加捻纱。以相同的制备工艺得到3种芳纶/PTFE织物复合材料,采用多试件摩擦磨损试验机测试复合材料的摩擦学性能,并对芳纶/PTFE混编织物及相应复合材料的结构形貌、力学性能和磨损表面进行分析与探讨。实验结果表明:芳纶纱的结构形貌可直接影响纱线的断裂强度、纱线拔出强力、纱线与树脂的界面结合力,进而影响织物复合材料的摩擦学性能;在不同的磨损条件下3种混编织物的耐磨性表现有所不同,当载荷相对较低时,芳纶短纤维加捻纱/PTFE织物复合材料磨损率更低,而当载荷较高时,芳纶长丝加捻纱/PTFE织物复合材料耐磨性更好。  相似文献   

2.
芳纶纤维在制动摩擦过程中的摩擦磨损特性研究   总被引:2,自引:2,他引:0  
陈东  鲁亮 《润滑与密封》2008,33(4):85-88
将芳纶纤维作为摩擦材料增强材料,通过摩擦磨损试验,借助于扫描电镜和X射线能谱仪,研究了芳纶纤维在制动摩擦表面的形貌特征和摩擦残留物,探讨了芳纶纤维在制动摩擦过程中所起的作用,分析了在高强度的制动条件下,芳纶纤维的摩擦磨损机制.结果表明:在高强度的制动摩擦条件下,处于表面层的芳纶纤维由于局部的过热,软化、熔化,芳纶纤维完全失去原有的机械强度,此时熔融的芳纶纤维在摩擦界面起到一定的润滑作用,这时摩擦材料的摩擦因数会显著降低.  相似文献   

3.
马保吉  朱均 《机械科学与技术》2003,22(4):632-634,688
对 Si Cp含量为 2 0 % (vol% )的铝基复合材料和芳纶纤维增强摩擦材料组成的摩擦副在干摩擦条件下的摩擦学特性进行了试验研究。试验表明 :摩擦副的摩擦系数受 Kevlar增强摩擦材料的热分解温度所控制 ,当温度低于2 0 0℃时 ,摩擦系数随滑动速度和温度增大而增大 ,并处于较高水平 ;当温度高于 2 0 0℃时 ,摩擦材料发生热分解 ,摩擦系数急剧下降到较低水平。摩擦材料具有磨损量和磨损率随滑动速度增加而减小的明显特征 ,摩擦副具有良好的耐磨性。建立了描述该摩擦副摩擦特性的数学模型。并用其解释了实验中的摩擦学现象。  相似文献   

4.
增强纤维对纸基摩擦材料性能的影响   总被引:1,自引:0,他引:1  
分别以碳纤维、芳纶纤维和纤维素纤维为增强体,采用湿法工艺制备出3种纸基摩擦材料。借助扫描电镜、热重分析仪和摩擦磨损性能试验机研究不同增强纤维纸基摩擦材料的微观形貌、耐热性能和摩擦磨损性能。结果表明:增强纤维在树脂基体中随机分布,形成大小不一的孔隙;纸基摩擦材料的热失重过程可以分为4个阶段,碳纤维增强纸基摩擦材料的第一阶段失重量仅为1.3%,耐热性能优异;在压力和转速变化条件下,碳纤维增强纸基摩擦材料动摩擦因数的稳定系数分别为91.7%和97.3%,磨损率为2.56×10-5mm3/J,远优于其他2种纤维增强的纸基摩擦材料。  相似文献   

5.
针对纤维填料改性UHMWPE水润滑轴承的摩擦磨损性能进行研究。在平面摩擦磨损试验机上对玻璃纤维及碳纤维填料对UHMWPE复合材料摩擦性能进行试验,并分析GF-CF-UHMWPE材料与Thordon SXL材料在干摩擦、水润滑工况下的摩擦因数及磨损量。最后,采用径向水润滑轴承试验台对比研究了GF-CF-UHMWPE轴承和Thordon SXL轴承在不同载荷下摩擦因数随转速的变化规律。结果表明:纤维填料能显著增强UHMWPE的减摩性和耐磨性,GF-CF-UHMWPE材料具有更好的耐温性能,线性热膨胀系数也显著减小;GF-CF-UHMWPE轴承具有相同载荷下启动转速低,启动摩擦因数小的特性。  相似文献   

6.
混杂钛酸钾晶须、芳纶纤维、坡缕石纤维3种增强材料,复合制备一种非金属摩擦材料,运用正交试验法和极差分析法,研究各成分及其用量对材料摩擦性能的影响。结果表明:对材料的摩擦因数影响显著的顺序是芳纶纤维与坡缕石纤维交互作用,钛酸钾晶须,芳纶纤维,钛酸钾晶须与坡缕石纤维的交互作用,钛酸钾晶须与芳纶纤维的交互作用,坡缕石纤维。从磨损性来看,影响较大的因素是钛酸钾晶须,其次顺序是坡缕石纤维,芳纶纤维。最佳组合是钛酸钾晶须15%、芳纶纤维4%、坡缕石纤维15%。交互作用对材料的耐磨性影响显著的是芳纶纤维与坡缕石纤维,其次是钛酸钾晶须与芳纶纤维、钛酸钾晶须与坡缕石纤维。  相似文献   

7.
在MRH-03型环-块摩擦试验机上,在不同转速、载荷下对不同纤维取向的“飞龙”材料以及饱和吸水后的材料在纯水和人工海水下的摩擦性能进行研究。结果表明:不同纤维取向的“飞龙”材料具有不同的摩擦特性,摩擦方向垂直于单张纤维布时摩擦因数最大,而磨损率最低,摩擦位于单张纤维布上时摩擦因数最小而磨损率最大;随着转速增加,摩擦因数和磨损率均有所降低;随着载荷增加,纯水润滑时磨损率增大,海水润滑时磨损率无明显变化;饱和吸水后,材料的摩擦因数和磨损率,纯水润滑条件下降低,海水润滑条件下增大。SEM形貌分析表明,飞龙材料的磨损行为受到纤维对基体材料的支撑作用和基体材料对纤维的保护作用协同影响。  相似文献   

8.
以丁腈橡胶改性酚醛树脂作为树脂基体,芳纶纤维-玻璃纤维混杂纤维作为变量,经热压烧结制备出一种混杂纤维增强摩阻材料。在干摩擦条件下通过摩擦磨损试验机测试其摩擦学性能。经实验表明:材料的摩擦系数随着载荷、滑动速率的增大整体呈现减小趋势,磨损率随着载荷的增加出现波动,随滑动速率的增大呈现减小的趋势。在不同载荷和滑动速率条件下,含有芳纶/玻纤混杂纤维增强摩阻材料表现出较好的摩擦学性能。摩擦过程中,含有芳纶-玻纤混杂纤维的摩阻材料磨损形式为犁沟和塑性变形,未含有的磨阻材料磨损形式主要为疲劳磨损。  相似文献   

9.
表面处理对芳纶织物粘接性能及摩擦性能的影响   总被引:2,自引:0,他引:2  
考察了表面处理对芳纶织物材料粘接材料及摩擦磨损性能的影响。研究表明,芳纶织物经丙酮及蒸馏水除去织物表面附着物后,提高了粘接性能及耐磨性。芳纶织物经等离子体处理后,纤维表面含氧基增多和活性基团的生成是提高强俄粘接性能和耐磨性的主要因素。  相似文献   

10.
通过熔融共混法制备聚四氟乙烯(PTFE)/聚对苯二甲酸丁二醇酯(PBT)、硅灰石/PBT复合材料及芳纶质量分数为5%和10%的芳纶/PBT复合材料,对比分析4种改性PBT复合材料在水润滑条件下的摩擦磨损性能。结果表明:在中低速下,4种复合材料摩擦因数比较稳定,高速条件下,PTFE/PBT、硅灰石/PBT复合材料的摩擦因数逐渐上升,芳纶/PBT复合材料摩擦因数逐渐减小,其中芳纶质量分数为5%的改性PBT复合材料在试验时间内平均摩擦因数最小,摩擦因数稳定性最高;芳纶/PBT复合材料在试验时间内的磨损量明显小于PTFE/PBT及硅灰石/PBT复合材料,其中芳纶质量分数为5%的芳纶/PBT复合材料的磨损量最小;芳纶/PBT复合材料磨损机制主要为轻微的疲劳磨损,PTFE/PBT复合材料主要为黏着磨损,并伴随轻微的疲劳磨损,硅灰石/PBT复合材料以磨粒磨损为主。  相似文献   

11.
Short fiber reinforcement plays a definite role in governing the performance of a composite through the improvement of different material properties. The present investigation deals with the effect of aramid pulp and lapinas fiber on the friction and wear characteristics of a composite made from phenolic resin modified by powdered acrylonitrile butadiene rubber (NBR) on a pin-on-disc tribometer. Four composites, containing 10, 20, 30, and 40 wt% of aramid pulp with respect to phenolic resin content, were prepared. Another four composites, containing 50, 100, 200, and 300 wt% of lapinas fiber with respect to phenolic resin content, were also made. It was found that the two different fibers have distinctly different contributions to the friction and wear properties of the composites. It was also found that the incorporation of aramid pulp enhances friction stability of the composites much better than that of lapinas fiber. The change in surface morphology of these composites was studied by scanning electron microscopy (SEM) before and after the friction test. SEM images of friction samples containing aramid pulp corroborated the occurrence of wear through an adhesive wear mechanism, whereas the lapinas fiber–containing composites showed an abrasive wear mechanism.  相似文献   

12.
三种型式轴封的摩擦功耗测定与比较   总被引:1,自引:0,他引:1  
摩擦功耗是评价轴封节能与否的重要指标。利用MMU-2摩擦磨损试验机对3种结构型式轴封即填料密封、机械密封和360度旋转式组合密封的摩擦功耗进行了测定。试验结果表明:3种型式轴封的摩擦功耗随转速的增大而增大,填料密封摩擦功耗最大,机械密封摩擦功耗次之,360度旋转式组合密封摩擦功耗最小;不同材料的填料密封的摩擦功耗不同,碳纤维填料密封和四氟填料密封摩擦功耗基本接近,并且远远低于芳纶填料密封。该结果为正确选择轴封提供了重要的参考依据。  相似文献   

13.
纤维增强树脂基摩阻材料的摩擦学研究进展   总被引:1,自引:0,他引:1  
综述了纤维增强树脂基摩阻材料的研究和发展,主要分析了树脂基体、增强纤维和填料以及温度和PV值对摩阻材料摩擦学性能的影响及作用机理,简述了摩阻材料磨损机理的研究现状和主要磨损类型。并提出了今后研究摩阻材料应重视的问题。  相似文献   

14.
橡胶摩擦磨损过程中振动现象的研究   总被引:1,自引:1,他引:0  
利用测振仪对丁腈橡胶在摩擦磨损过程中出现的振动进行了测量,发现振幅随着转速的提高而逐渐增大,但达到某一临界转速后,振幅随转速增大而减小。通过理论分析发现振动现象的实质是构胶对销子的作用力的周期性变化引起销子的受迫振动。该现象与摩擦力密切相关,同时还造成磨损抽不均匀。  相似文献   

15.
卢凤龙  钱志欢 《光学仪器》2014,36(2):126-130,135
针对织物的纱线密度检测,提出一种对织物图像,信息进行检测的方法。通过数字相机获得织物图像,对织物图像进行最优二值化处理。利用像素黑白颜色区分织物上的纱线和间隙,通过扫描经线和纬线方向的像素颜色值获得纱线处像素颜色特性,从而计算出经线方向和纬线方向的纱线数目。根据各方向最大像素数得织物的大小,即可得知织物的密度。  相似文献   

16.
钢纤维和莫来石纤维增强陶瓷基摩擦材料的性能研究   总被引:1,自引:1,他引:0  
采用热压烧结法制备出钢纤维和莫来石纤维增强陶瓷基摩擦材料,对比分析钢纤维、钢纤维和莫来石纤维的混杂纤维以及莫来石纤维增强陶瓷基摩擦材料的机械性能和摩擦磨损特性。利用扫描电子显微镜(SEM)观察不同温度下的磨损表面和磨屑形貌,并研究其磨损机制。研究结果表明,钢纤维和莫来石陶瓷混杂纤维增强的陶瓷基摩擦材料具有较高的机械强度以及良好的摩擦稳定性和耐磨性能,以莫来石纤维增强的陶瓷基摩擦材料,摩擦因数表现出严重的热衰退,且具有低的耐磨损性能。SEM分析表明,在从低温到高温的摩擦过程中,钢纤维和莫来石陶瓷混杂纤维增强的陶瓷基摩擦材料的磨损形式主要由黏着磨损转化为黏着磨损与磨粒磨损的复合磨损形式,而以莫来石纤维增强的陶瓷基摩擦材料,其磨损形式以磨粒磨损为主。  相似文献   

17.
刘思涵 《润滑与密封》2023,48(12):187-193
采用柔性石墨、造粒石墨和鳞片石墨分别制备粉末冶金烧结摩擦材料,研究不同种类片状石墨对摩擦材料摩擦磨损性能的影响。结果表明:不同种类石墨制备的摩擦材料的密度和力学强度差异,将影响材料基体在制动过程中的组织形态,使摩擦界面呈现不同的磨损形式,其中柔性石墨摩擦材料的主要磨损机制为氧化磨损,造粒石墨摩擦材料的主要磨损机制为犁削磨损和磨粒磨损,鳞片石墨摩擦材料的主要磨损机制为犁削磨损和黏着磨损;造粒石墨制备的摩擦材料在不同速度下制动和重复单次制动时的摩擦因数波动值较小,摩擦因数稳定性好,且具有适中的磨耗量,综合摩擦磨损性能最佳。  相似文献   

18.
橡胶密封件作为阀门产品的重要零部件,橡胶密封件的摩擦磨损性能直接影响其密封性和阀门产品寿命可靠性。针对低温橡胶硫化密封件进行密封力仿真确定,开展相关摩擦磨损试验。在干摩擦与脂润滑条件下,利用摩擦磨损试验机,测试不同摩擦配副之间的摩擦磨损性能,获得接触面表面形貌以及不同橡胶密封副之间的摩擦磨损量。结果表明:性能表现最佳的橡胶材料为氢化丁腈橡胶HNBR5080和耐磨丁腈橡胶A-4-1-J18。实验数据可为后续的阀门产品设计提供技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号