首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graft copolymerization of styrene onto poly(vinyl chloride) (PVC) and polypropylene (PP) was carried out in a supercritical CO2 medium using AIBN as a free radical initiator. The supercritical CO2 medium served as a reaction medium in addition to being a solvent for the styrene monomer and the free radical initiator. The reaction temperature and pressure were kept above the critical points of the solvent‐monomer mixture to form a homogeneous single‐phase medium. The resulting graft copolymers were characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and nuclear magnetic resonance (NMR) techniques. The weight percent of grafting was determined using IR absorbance ratio technique. TGA results showed that the thermal stabilily of grafted copolymer of PVC was better than that of PVC, while grafted copolymer of PP had poorer thermal stability than PP. DSC results showed that glass transition temperatures (Tg's) of the grafted copolymers were higher than those of the starting polymers PVC and PP. The presence of polystyrene attached to the backbone polymer was confirmed by 1H NMR and 13C NMR analyses.  相似文献   

2.
Ethylene homo polymer and ethylene–styrene copolymers were synthesized using Cp2ZrCl2 (1)/methyl aluminoxane (MAO) and rac-silylene-bis (indenyl) zirconium dichloride (2)/MAO catalyst systems by varying styrene concentration and reaction conditions. Crystallization analysis fractionation (CRYSTAF), DSC, FTIR and 1H NMR spectroscopy were used for characterizing the synthesized polymers. Interestingly, styrene was able to increase the activity of 1/MAO and 2/MAO catalyst systems at low concentrations, but at higher concentrations the activity decreases. The 1/MAO system at low and high pressure was unable to incorporate styrene, and the final product was pure polyethylene. On the other hand, with 2/MAO polymerization of ethylene and styrene yielded copolymer containing both styrene and ethylene. Results obtained from CRYSTAF and DSC reveal that on using 1/MAO system at high pressure, the resulting polymer in the presence of styrene has similar crystallinity as the polymer produced without styrene. Using both 1/MAO at low pressure and 2/MAO leads to decrease in crystallinity with increase in styrene concentration, even though the former does not incorporate styrene.  相似文献   

3.
Homopolymers and copolymers of styrene and different acrylic esters (i.e., acrylates) were synthesized by the free‐radical solution polymerization technique. Feed ratios of the monomers styrene and cyclohexyl acrylate/benzyl acrylate were 90 : 10, 75 : 25, 60 : 40, 50 : 50, 40 : 60 and 20 : 80 (v/v) in the synthesis of copolymers. All 6 homopolymerizations of acrylic ester synthesis were carried out in N,N(dimethyl formamide) except for the synthesis of poly(cyclohexyl acrylate) (PCA), where the medium was 1,4‐dioxane. Benzoyl peroxide (BPO) and azobisisobutyronitrile (AIBN) were used as initiators. The polymers synthesized were characterized by FTIR, 1H‐NMR, 13C‐NMR spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and viscosity measurements. The reactivity ratios were determined by the Fineman–Ross method using 1H‐NMR spectroscopic data. The reactivity ratios (r) for the copolymerization of styrene (rS) with cyclohexyl acrylate (rCA) were found to be rS = 0.930 and rCA = 0.771, while for the copolymerization of styrene with benzyl acrylate, the ratios were found to be rS = 0.755 and rBA = 0.104, respectively. The activation energies of decomposition (Ea) and glass‐transition temperature (Tg) for various homo‐ and copolymers were evaluated using TGA and DSC analysis. The activation parameters of the viscous flow, voluminosity (VE) and shape factor (ν) were also computed for all systems using viscosity data. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1513–1524, 2001  相似文献   

4.
This article reports the synthesis and characterization of four arm star‐shaped poly(styrene‐b‐[(butadiene)1?x‐(ethylene‐co‐butylene)x]‐b‐styrene) (SBEBS) copolymers. A series of SBEBS copolymers with different compositions of the elastomeric block were produced by hydrogenating a given poly(styrene‐b‐butadiene‐b‐styrene) (SBS) copolymer using a catalyst prepared from bis(η5‐cyclopentadienyl)titanium(IV) dichloride and n‐butyllithium. The characterization was accomplished by proton nuclear magnetic resonance spectroscopy (1H NMR), infrared spectroscopy (FTIR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). The results indicate that there is a selective saturation of the polybutadiene block over the polystyrene block; this selectivity was determined by the Ti/Li molar ratio and the concentration of Ti. It was observed that the saturation rate of the 1,2‐vinyl was higher than that of the 1,4‐trans and 1,4‐cis poly(butadiene)‐b isomers. The DSC and DMA results indicate that the degree of hydrogenation had a profound effect on the polymer's relaxation behavior. All samples exhibited a biphasic system behavior with two distinct transitions corresponding to the elastomeric and polystyrene blocks. SBEBS copolymers with higher saturation levels (>33%) exhibited a crystalline character. The TGA results indicated a characteristic weight loss temperature in all samples, with slightly higher thermal degradation stabilities in the materials with higher degrees of saturation. POLYM. ENG. SCI., 54:2332–2344, 2014. © 2013 Society of Plastics Engineers  相似文献   

5.
Reverse atom transfer radical polymerization (RATRP) of styrene (S) was carried out in bulk using polyazoester prepared by the reaction of polyethylene glycol with molecular weight of 3000 and 4,4′-azobis(4-cyanopentanoyl chloride) as initiator and CuCl2/2,2′-bipyridine (bpy) catalyst system to yield poly(ethylene glycol-b-styrene) block copolymer. The block copolymers were characterized 1H NMR, FT-IR spectroscopy and GPC. The 1H NMR, and FT-IR spectra showed that formation of poly(ethylene glycol-b-styrene) block copolymer. The polydispersities of block copolymers were observed between from 1.49 and 1.98 GPC measurements.  相似文献   

6.
High vinyl high styrene solution SBR   总被引:1,自引:0,他引:1  
Objective: the objective of this study is to prepare high vinyl copolymers containing various levels of styrene and butadiene, and also to prepare random butadiene in high styrene content styrene-butadiene copolymers (SBR) while controlling the styrene block length. These materials could be used in race tread applications. Summary: This reports presents the synthesis and characterization of random, high vinyl copolymers containing styrene and butadiene (SBR's). The styrene content of these SBR's ranged from 10 to 80%. These SBR's were synthesized via anionic polymerization initiated by a catalyst system with a ratio of 1/0.4/5 of n-butyllithium (n-BuLi) to sodium dodecylbenzene sulfonate (SDBS) to N,N,N′,N′-tetramethylethylenediamine (TMEDA). Kinetic data as well as NMR and ozonolysis techniques confirm that random SBR copolymers are being produced for low styrene content polymers. The glass transition temperature (Tg), increased dramatically as the styrene content was increased. The amount of vinyl based upon the polymer's total composition within the copolymer was found to decrease linearly as you increase the amount of styrene in the polymer. TGA results show that high styrene content polymers degrade at lower temperatures. The RPA confirms that as the styrene content increases, the elastic modulus decreases. As the frequency increased, the tan delta decreased for each polymer. Tan delta does not appear to be a function of styrene content. TEM results helped to describe polymer microstructure.  相似文献   

7.
In order to overcome the poor flowability of poly(arylene sulfide sulfone) (PASS), we introduced ether bonds into the polymer main chain. A series poly(arylene ether sulfide sulfone) copolymers (PAESS) containing different proportion of ether bonds were synthesized with 4,4′‐dichlorodiphenyl sulfone (DCDPS), sodium sulfide (Na2xH2O), and 4,4′‐dihydroxydiphenyl ether (DHDPE). The copolymers were characterized by Fourier transform infrared (FTIR), 1H‐nuclear magnetic resonance (NMR), differential scanning calorimetry, dynamic mechanical analysis (DMA), and rheometer. The results of FTIR and 1H‐NMR indicate the copolymers are synthesized successfully. PAESS were found to have excellent thermal properties with glass transition temperature (Tg) of 175.7–219.1 °C and 5% weight lost temperature were all above 420 °C. The tensile and DMA test indicates that these resultant copolymers have good mechanical properties with tensile strength of 60 MPa and storage modulus of 1.5 GPa. From the results of rheology properties testing, we found that the melt stability and melt flowability of PASS were improved distinctly from 25,470 Pa s down to 355 Pa s with the incorporation of ether bonds. That will be quite beneficial to the processing of PASS, especially for the thermoforming of precision products. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46534.  相似文献   

8.
Summary Random copolymerization of norbornene with styrene was studied by using a series of late metal catalysts/MAO. The precatalysts used here are nickel complexes with b-ketoamine ligands based on pyrazolone derivatives. The copolymers obtained here suggest that only one type of active species is present. Copolymers were characterized by 13C NMR, Gel permeation chromatography (GPC), thermogravimetric analysis (TGA) and FT-IR spectra. The analyses of the product by 1H NMR and 13C NMR spectra gave the verification of “true” random vinyl addition copolymer. Varying the monomer feed ratio controlled the composition of the copolymers. A copolymerization reactivity ratio (rNBE = 20.35 and rSty = 0.027) indicates a much higher reactivity of norbornene, which suggests a coordination polymerization mechanism. The solubility and processability of the copolymers are improved relative to polynorbornene and the thermostability of the copolymers is improved relative to polystyrene.  相似文献   

9.
Many new speciality polymers have been developed in the last few years. In this paper polymeric stabilizers (antioxidants, flame retardants and ultraviolet stabilizers) will be discussed. Polymeric antioxidants of the hindered-phenol type, copolymers of 2,6-ditertiarybutyl-4-vinyl(or isopropenyl)phenol with styrene, methyl methacrylate, or more importantly butadiene or isoprene have been prepared; hydrogenation of the latter copolymers gave copolymers of the two polymerizable phenolic antioxidants with ethylene or ethylene/propylene. The polymeric antioxidants have been blended with diene polymers and selected polyolefins and have improved the long-term oxidative stability of these polymers. Polymeric flame retardants have been prepared by copolymerizing styrene and/or acrylonitrile with acrylates and methacrylates of aliphatic bromine-containing alcohols or bromine-containing phenols. Polymers with polymer-bound flame retardants have a higher limiting oxygen index compared with the original polymer. A new class of polymerizable ultraviolet stabilizers has also been developed; these stabilizers are styryl, α-methylstyryl, acryloyl and methacryloyl derivatives of 2(2-hydroxyphenyl)2H-benzotriazoles. These monomers have been copolymerized with styrene, acrylates and methacrylates. 2(2-Hydroxyphenyl)2H-benzotriazoles substituted in the 4 position of the benzotriazole ring with hydroxyl, acetoxy or carboxyl groups suitable for incorporation into polyesters, polycarbonates, polyamides and epoxy resins have also been synthesized. All 2(2-hydroxyphenyl)2H-benzotriazole ultraviolet absorbers and the polymers into which they are incorporated have high light absorbency with γmax between 330 and 350 nm and extinction coefficients in some cases as high as 4.5 × 104 1 mol?1 cm?1.  相似文献   

10.
Summary Methyl 2-cyano-3-dihalophenyl-2-propenoates, R2C6H3CH=C(CN)CO2CH3 (R2= 2,4-difluoro, 2,5-difluoro, 2,6-difluoro, 3,4-difluoro, 3,5-difluoro, and 2-chloro-6-fluoro), were prepared by the piperidine catalyzed Knoevenagel condensation of corresponding disubstituted benzaldehydes and methyl cyanoacetate. Novel copolymers of the propenoates and styrene were prepared at equimolar monomer feed by solution copolymerization in the presence of a radical initiator. The order of relative reactivity (1/r 1) was 2,5-difluoro (2.11) > 2,6-difluoro (1.84) > 3,5-difluoro (1.71) > 2,4-difluoro (1.4) > 3,4-difluoro (0.65) > 2-chloro-6-fluoro (0.59). The copolymers were characterized by IR, 1H and 13C NMR, GPC, DSC and TGA. High glass transition temperatures of the copolymers compared that of polystyrene indicates a substantial decrease in chain mobility of the copolymers due to the high dipolar character of the trisubstituted ethylene monomer unit. Received: 12 June 2000/Revised version: 12 September 2000/Accepted: 12 September 2000  相似文献   

11.
Ring-opening polymerization of epoxidized soybean oil (ESO) catalyzed by boron trifluoride diethyl etherate (BF3·OEt2) in methylene chloride was conducted in an effort to develop useful biodegradable polymers. The resulting polymerized ESO (PESO) were characterized using infrared (IR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), 1H NMR, 13C NMR, solid state 13C NMR and gel permeation chromatography (GPC). The results indicated that PESO materials were highly crosslinked polymers. They had glass transition temperatures ranging from −16 to −48 °C. TGA results showed the PESO polymers were thermally stable at temperatures up to 220 °C. Decomposition of the polymers was found to occur at temperature greater than 340 °C. GPC results indicated the extracted soluble substances from PESO polymers were ESO dimers, trimers and polymers with low molecular weights. The resulting crosslinked polymers can be converted into hydrogels by chemical modification, such as hydrolysis. These soy based hydrogels will find applications in personal care and health care areas.  相似文献   

12.
New functionalized styrene–maleimide copolymers were prepared by free radical copolymerization of styrene (St) and N‐4‐carboxybutylmaleimide (NBMI) in chloroform, using 2,2′‐azobisisobutyronitrile (AIBN) as initiator. Monomer and copolymer characterization was carried out by 1H‐ and 13C‐NMR. Copolymer composition was determined by elemental analysis and Fourier‐transform infrared (FTIR) spectroscopy. The glass transition temperature (from DSC) and the thermogravimetric analysis (TGA) of the copolymers were consistent with the thermal behavior and stability observed for alternating St–maleimide copolymers. St–NBMI copolymers crosslinked with divinylbenzene (DVB) were also synthesized and their cation exchange properties evaluated in order to assess the capacity of the new copolymers to bind metallic ions. Copyright © 2005 Society of Chemical Industry  相似文献   

13.
F. Yilmaz  Y. Guner  Y. Yagci 《Polymer》2004,45(17):5765-5774
A novel N-(4-(3-thienyl methylene)-oxycarbonylphenyl) maleimide (MBThi) monomer was synthesized by the esterification reaction of maleimidobenzoic acid (MBA) with 3-thiophene methanol. Photoinduced radical polymerization was employed to prepare the alternating copolymers of MBThi with styrene (St) at room temperature using ω,ω-dimethoxy-ω-phenylacetophenone (DMPA) as photoinitiator. Different copolymerization conditions were examined to estimate the influence of the used solvents and comonomers' total molar concentration on the conversion, the number-average molecular weight (Mn), and polydispersity index (Mw/Mn) of the resulting polymers. Thermal behavior of the alternating copolymers (PSt-alt-MBThi) was also investigated by thermogravimetrical analysis (TGA) and differential scanning calorimetry. Moreover, the obtained alternating copolymers were employed in electropolymerization experiments and random conjugated graft copolymers with thiophene or pyrrole were synthesized through their pendant thienyl groups. These polymers were characterized by cyclic voltammetry (CV), FTIR and scanning electron microscopy (SEM). Conductivity measurements were carried out by the four-probe technique.  相似文献   

14.
A series of polymethylene‐bridged dinuclear constrained geometry catalysts (CGC) [Me2Si(Ind)(NtBu) TiCl2]2[(CH2)n] ( 1 , n = 6; 2 , n = 9; 3 , n = 12) were synthesized to study the copolymerization of ethylene and styrene. The experiments display that the polymerization activity of the dinuclear catalysts increased in the order of 1 < 2 < 3 , which indicated that the dinuclear CGC with the longest methylene units as a bridge showed the greatest activity. According to the activity correlation with the monomer ratio, all the catalysts exhibited maximum polymerization activity at the monomer ratio of ([styrene]/[ethylene]) of 2. The dinuclear CGC 2 and 3 represented excellent characteristics of styrene reactivity while catalyst 1 represented considerably low styrene reactivity. The relation between the molecular weights of the polymers and the catalysts used in the polymerization is not straightforward. The steric interference in catalyst 1 , containing just six methylene bridges, can be applied to explain not only the strikingly decreased activity but also the very low styrene content in the copolymer. In contrast, the electronic effect seems to be more pronounced in manipulating the polymerization properties of catalysts 2 and 3 having nine and 12 methylene bridges, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2469–2474, 2003  相似文献   

15.
We demonstrated here a facile method to synthesize novel double crystalline poly(butylene terephthalate)-block-poly(ethylene oxide)-block-poly(butylene terephthalate) (PBT-b-PEO-b-PBT) triblock copolymers by solution ring-opening polymerization (ROP) of cyclic oligo(butylene terephthalate)s (COBTs) using poly(ethylene glycol) (PEG) as macroinitiator and titanium isopropyloxide as catalyst. The structure of copolymers was well characterized by 1H NMR and GPC. TGA results revealed that the decomposition temperature of PEO in triblock copolymers increased about 30 °C to the same as PBT copolymers, after being end-capped with PBT polymers. These triblock copolymers showed double crystalline properties from PBT and PEO blocks, observed from DSC and WAXD measurements. The melting and crystallization peak temperatures corresponding to PBT blocks increased with PBT content. The crystallization of PBT blocks showed the strong confinement effects on PEO blocks due to covalent linking of PBT blocks with PEO blocks, where the melting and crystallization temperatures and crystallinity corresponding to PEO blocks decreased significantly with increment of PBT content. The confinement effect was also observed by SAXS experiments, where the long distance order between lamella crystals decreases with increasing PBT length. For the triblock copolymer with highest PBT content (PBT54-b-PEO227-b-PBT54), this effect shows a 30 °C depression on PEO crystals' melting temperature and 77% on enthalpy, respectively, compared to corresponding PEO homopolymer. The crystal morphology was observed by POM, and amorphous-like spherulites were observed during PBT crystallization.  相似文献   

16.
Imidazolium ionene segmented block copolymers were synthesized from 1,1′-(1,4-butanediyl)bis(imidazole) and 1,12-dibromododecane hard segments and 2000 g/mol PTMO dibromide soft segments. The polymeric structures were confirmed using 1H NMR spectroscopy, and resonances associated with methylene spacers from 1,12-dibromododecane became more apparent as the hard segment content increased. TGA revealed thermal stabilities ≥250 °C for all imidazolium ionene segmented block copolymers. These ionene segmented block copolymers containing imidazolium cations showed evidence of microphase separation when the hard segment was 6-38 wt%. The thermal transitions found by DSC and DMA analysis found that the Tg and Tm of the PTMO segments were comparable to PTMO polymers, namely approximately −80 °C and 22 °C, respectively. In the absence of PTMO soft segments the Tg increased to 27 °C The crystallinity of the PTMO segments was further evidence of microphase separation and was particularly evident at 6, 9 and 20 wt% hard segment, as indicated in X-ray scattering. The periodicity of the microphase separation was well-defined at 20 and 38 wt% hard segment and found to be approximately 10.5 and 13.0 nm, respectively, for these ionenes wherein the PTMO soft segment is 2000 g/mol. Finally, the 38 and 100 wt% hard segment ionenes exhibited scattering from correlations within the hard segment on a length scale of approximately 2-2.3 nm. These new materials present structure on a variety of length scales and thereby provide various routes to controlling mechanical and transport properties.  相似文献   

17.
Multiblock copolymers of styrene, butadiene, and ethylene oxide were synthesized by coupling together telechelic dihydroxyl polystyrene, telechelic dihydroxyl polybutadiene, and poly(ethylene glycol), using 2,4-toluene diisocyanate as coupling agent. The copolymers were purified by extractions and characterized by infrared (IR), 1H nuclear magnetic resonace (NMR), gel permeation chromatography (GPC), transmission electron microscopy (TEM), membrane osmometry, and dynamic viscoelastometry. The multiblock copolymers are amphiphilic, exhibiting very good emulsifying properties. They possess a good phase transfer catalytic ability in Williamson reaction, and their LiClO4 complexes exhibit a conductivity above 1 × 10−4 S/cm at 35°C. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Water‐soluble polyphenol‐graft‐poly(ethylene oxide) (PPH‐g‐PEO) copolymers were prepared using grafting‐through methodology. Polyphenol chains were synthesized via enzymatic polymerization of phenols, and the graft chains were synthesized via living anionic polymerization of ethylene oxides. The polymers were characterized using gel permeation chromatography, static light scattering and 1H NMR, infrared and ultraviolet spectroscopies. The PPH‐g‐PEO graft copolymers are soluble in several common solvents, such as water, ethanol, N,N‐dimethylformamide, tetrahydrofuran and methylene dichloride. The solubility of the PPH‐g‐PEO graft copolymers is improved significantly compared with that of polyphenol. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
Multiphase triblock styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene (SEBS) copolymers chemically modified with maleic anhydride (MAH) in the presence of a radical initiator by reactive extrusion were studied by solid‐state 1H‐NMR and 13C‐NMR. In the experiments performed, the concentrations of MAH and initiator were kept constant, whereas the temperature profile in the extruder was varied. Samples with known extents of grafting and crosslinking were analyzed with NMR with techniques based on proton spin diffusion to investigate the microphase structure of the modified copolymers. The 13C‐NMR results show that the size of the rigid domains was about 15 nm and was not significantly changed by the modification. Alterations in the rubbery phase were illustrated by measured changes in proton spin‐spin (T2) relaxation times. The fraction of protons having intermediate mobilities increased slightly in modified SEBS with respect to that observed in unmodified copolymers. These results were found to be independent of the extruder temperature profiles used, at least in the range studied. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Star‐block copolymers comprised of poly(styrene) (S) core and four poly(ε‐caprolacton) (ε‐CL) arms were synthesized by the combination of free radical polymerization (FRP) of S and ring opening polymerization (ROP) of ε‐CL in one‐step in the presence of tetrafunctional ineferter. The block copolymers were characterized by 1H‐NMR and FTIR spectroscopy, gel permeation chromatography (GPC), and fractional precipitation method. 1H ‐NMR and FTIR spectroscopy and GPC studies of the obtained polymers indicate that star‐block copolymers easily formed as result of combination FRP and ROP in one‐step. The γ values (solvent/precipitant volume ratio) were observed between 1.04–2.72 (mL/mL) from fractional measurements. The results show that when the initial S feed increased, the molecular weights of the star‐block copolymers also increased and the polydispersities of the polymers decreased. Mw/Mn values of the products were measured between 1.4 and 2.86 from GPC. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号