首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 189 毫秒
1.
李希  谭建豪 《机器人》2019,41(1):9-18
针对旋翼飞行多关节机械臂内部参数不确定性、外部环境和自身机械臂规划运动对飞行平台的干扰问题设计了一种姿态控制方法.首先将跟踪微分器作为期望姿态角的过渡过程,利用自适应RBFNN(径向基函数神经网络)算法对旋翼飞行多关节机械臂内、外部干扰进行逼近估计并实时补偿.然后采用非线性状态误差反馈控制来实现旋翼飞行多关节机械臂的姿态跟踪控制,并利用李亚普诺夫函数进行稳定性分析.最后,在仿真平台上实现该算法,将其仿真结果分别与PID(比例-积分-微分)控制、传统自抗扰控制(ARDC)进行比较分析.并且在实际旋翼飞行多关节机械臂系统上进行了实验,在0.4 s之内三轴姿态角可从0快速跟踪到0.6 rad且无超调.该算法对各通道的扰动有较强的抗干扰性,对系统参数有较强的鲁棒性,并且明显优于ARDC和PID算法.结果说明该算法能有效地解决系统不确定性干扰问题以实现姿态角的准确、快速跟踪.  相似文献   

2.
作业型飞行机器人是指能够对环境施加主动影响的飞行机器人, 它通常由旋翼飞行器与机械臂组合而成. 本文针对作业型飞行机器人在动态飞行抓取后, 重心位置变化产生的系统控制难题, 设计了有效的跟踪控制策略. 首先, 在系统建模时引入重心偏移系统参数和重心偏移控制参数, 并考虑惯性张量不为常数, 提高了系统建模的精度. 然后, 在姿态解算时, 考虑重心偏移对系统性能的影响, 构建包含重心偏移系统参数的解算方法, 得到更高精度的期望翻滚角和期望俯仰角. 接着, 设计了基于滑模控制的重心偏移补偿位置控制器, 实现了有效的位置跟踪控制. 同时, 在姿态反演控制器的基础上, 加入自适应律估计重心偏移控制参数和变化的惯性张量, 再通过小脑神经网络逼近惯性张量的真实值, 提高姿态控制器的精度. 最后, 给出了所设计控制器的稳定性证明, 并在仿真环境下验证了所提出的方法的有效性和优越性.  相似文献   

3.
飞行机械臂系统的接触力控制   总被引:1,自引:0,他引:1  
针对飞行机械臂系统的接触力控制问题,本文首先从理论上证明了闭环无人机系统具有与弹簧-质量-阻尼系统一致的动态特性.基于飞行机械臂接触状态下力的分析,得到了无人机水平前向接触力与系统重力和俯仰角之间的动态关系,进而分析出接触力控制可以不使用力传感器来实现.根据阻抗控制思想,提出了飞行机械臂系统接触力控制方法,即通过同时控制位置偏差和对应姿态角度来实现接触力的控制.给出了单自由度飞行机械臂系统动力学模型,对应分析出系统的稳定性.开发了基于四旋翼飞行器的单自由度飞行机械臂系统,并进行了实际的飞行实验,验证了所提出接触力控制方法的有效性,同时也证实了所开发系统的可靠性.  相似文献   

4.
针对作业型飞行机器人完成抓取、搬运等任务时所产生的重心偏移问题,设计了一种带有重心调节机构的作业型飞行机器人,并提出了一种重心调节控制策略.该方法通过对作业装置中的机械臂进行运动学推导,动态计算出机械臂运动时复合系统重心位置的改变量,利用力矩平衡方程计算得到调节机构所需转动的角度,从而实现对复合系统重心的调节.为验证所提出控制策略的有效性,在Matlab仿真环境中,分别研究了有无重心调节控制时机械臂运动对复合系统重心轨迹和定点悬停位姿的影响.通过户外实物实验测试了飞行机器人搭载负载情况下,调节机构在定点悬停作业时的稳定效果.实验结果表明,在所述控制策略下,重心调节机构能够在飞行机器人作业过程中实时调节复合系统重心的偏移量,验证了控制策略的有效性.  相似文献   

5.
针对悬吊式机械臂在工作过程中受起吊荷载的影响而产生的重心不稳现象,在模糊PID控制算法的支持下,进行悬吊式机械臂重力补偿控制系统设计研究。硬件方面,改装主控制器、传感器和通信模块,加设重力补偿装置及驱动电机设备。在此基础上完成软件设计,根据机械臂的组成结构以及工作原理,构建悬吊式机械臂数学模型。在该模型下,检测悬吊式机械臂实时位姿,针对不同位姿建立相应的重力平衡方程。计算机械臂负载力矩,利用模糊PID算法求解机械臂重力补偿控制量,实现悬吊式机械臂重力补偿控制功能。实验结果表明:与传统重力补偿控制系统相比,优化设计系统的控制误差降低了0.056kN,机械臂的稳定系数提升了0.14,即优化设计系统可提高补偿控制效果,具有一定应用价值。  相似文献   

6.
顾玥  宋光明  郝爽  毛巨正  宋爱国 《机器人》2023,(5):523-531+545
传统欠驱动旋翼无人机的动力单元推力方向平行,无法在不改变姿态的情况下产生横向推力,限制了飞行机械臂的交互能力与应用场景。针对此问题,本文设计了一种全驱动旋翼飞行机械臂,通过倾斜动力单元的安装角度改变推力的方向,根据该结构设计了控制分配矩阵进而验证其全驱动特性,并从控制结构上实现了位置与姿态的独立控制;提出了用于接触作业的飞行机械臂的接触力控制方法,将接触检测任务分为接近阶段与移动接触阶段,采用力/运动混合控制器完成接触面法线方向上的力控制。户外实验结果表明,所设计的全驱动旋翼飞行机械臂实现了稳定飞行和移动接触作业,与欠驱动平台相比,飞行过程中的位置移动不依赖于姿态改变,姿态角稳定在±1.5?以内,且在移动接触过程中实现了接触面法线方向上的接触力控制。  相似文献   

7.
面向飞行机械臂的飞行抓取作业,提出了一个由六旋翼飞行机器人和7自由度机械臂组成的飞行机械臂系统.系统采用分离式控制策略,即飞行机器人和机械臂各有一个控制器.机械臂运动所引起的系统质心和转动惯量的变化量及其导数被用来估计机械臂对飞行机器人的扰动力和力矩.为了减弱机械臂扰动对六旋翼飞行机器人的飞行控制性能的影响,提出了扰动补偿H∞鲁棒飞行控制器.实验结果表明,与没有扰动补偿的控制器相比,当机械臂运动时所提出的扰动补偿H∞鲁棒控制器对系统的飞行控制性能有明显的提升效果.最后,目标物抓取作业实验验证了所提出的飞行机械臂系统的可靠性.  相似文献   

8.
旋翼飞行机械臂(rotorcraft aerial manipulator,RAM)系统是安装在飞行机器人上的可操作型机械臂,悬停模式下执行准确的空中操作时旋翼无人机与所加机械臂之间存在相对扰动,通过分离机械臂与飞行机器人进行动力学建模并不能有效消除这种扰动.本文基于对相互扰动力学作用的分析建立整体动力学模型,并在悬停飞行模式下将其简化为线性控制参考模型.进而对旋翼系统控制延时所引起的动力学扰动进行补偿,同时设计预测控制器来消除末端执行器的位置和姿态误差.最后,在存在内部和外部扰动的情况下,设定销钉插入操作任务进行控制方法的对比仿真.末端执行器位姿偏差的仿真结果表明了模型结构与控制方法的有效性.  相似文献   

9.
四旋翼飞行器非线性、强耦合以及欠驱动的特性极大地增加了算法设计与姿态控制的难度。为了减少四旋翼飞行器飞行过程中不必要的干扰因素和事故率,自主设计了四旋翼飞行姿态测试平台。通过对系统进行受力分析和动态建模,采用能够快速稳定的双闭环串级PID控制算法设计了姿态控制器,并使用卡尔曼滤波算法进行姿态估计,然后分别在Matlab环境和平台上验证了飞行姿态的稳定性。实验结果表明了平台设计的合理性和可行性,是一种有效的四旋翼飞行姿态测试平台。  相似文献   

10.
为了获得更好的环境适应性,研究设计了一种主动变形四旋翼飞行器.飞行器的变形主要分为两种:机臂伸缩和折叠.为抑制系统所受内外扰动影响,设计了基于自抗扰控制(ADRC)技术的飞行控制器.首先对主动变形四旋翼结构进行设计,使用牛顿欧拉法建立风扰下系统动力学模型,然后分析阵风对系统影响以及动态变形时重心位置、惯性张量等参数的变化,接着将主动变形四旋翼系统解耦成6个SISO系统的组合并设计位姿自抗扰控制器,最后分别利用扩张状态观测器和非线性状态误差反馈律对系统所受扰动进行观测和补偿.仿真结果表明,本文所设计的基于ADRC飞行控制器的主动变形四旋翼具有优秀的位姿控制能力,在飞行过程中可以良好地进行变形,能够有效地观测变形的扰动和紊流风扰,具有较强的稳定性和抗扰性,同时对系统部分动力失效故障有较强的鲁棒性.  相似文献   

11.
本文建立了双机械臂协调系统的主从式控制的非结构模型,并针对两臂具有相同特性和不同特性这两种情形作了稳定性分析,提出特性校正的方法,本文还利用内模原理设计出动态补偿器来克服标定约束的不确定性对系统控制品质的影响,最后给出了实验结果。  相似文献   

12.
针对移动装弹机械臂系统非线性、强耦合、受多种不确定因素影响的问题,本文基于自适应动态规划方法,提出了仅包含评价网络结构的轨迹跟踪控制方法,有效减小了系统跟踪误差.首先,考虑到系统非线性特性、变量间强耦合作用及重力因素的影响,通过拉格朗日方程建立了移动装弹机械臂的动力学模型.其次,针对系统存在不确定性上界未知的问题,建立单网络评价结构,通过策略迭代算法,求解哈密顿–雅可比–贝尔曼方程,基于李雅普诺夫稳定性理论,设计了自适应动态规划轨迹跟踪控制方法.最后,通过仿真实验将该控制方法与自适应滑模控制方法进行了对比,进一步检验了所设计控制方法的有效性.  相似文献   

13.
This paper describes analysis and control for a holonomic omnidirectional mobile manipulator, in which the holonomic omnidirectional platform consists of three lateral orthogonal wheel assemblies and a mounted manipulator with three rotational joints is located at the center of gravity of the platform. We first introduce the kinematic model for the mobile manipulator and derive the dynamical model by using the Newton–Euler method, where a model which simultaneously takes account of features of both the manipulator and the mobile parts is given to analyze the effect of the movement of mounted manipulator on the platform. Then, the computed torque control and the resolved acceleration control methods are used to show that the holonomic omnidirectional mobile manipulator can be controlled so as to retain any end-effector position and orientation, irrespective of the direction of external applied force. The validity of the model and the effectiveness of the present mobile manipulator are proved by using several numerical simulations and 3D animations.  相似文献   

14.
This paper presents methodologies for dynamic modeling and trajectory tracking of a nonholonomic wheeled mobile manipulator (WMM) with dual arms. The complete dynamic model of such a manipulator is easily established using the Lagrange’s equation and MATHEMATICA. The structural properties of the overall system along with its subsystems are also well investigated and then exploited in further controller synthesis. The derived model is shown valid by reducing it to agree well with the mobile platform model. In order to solve the path tracking control problem of the wheeled mobile manipulator, a novel kinematic control scheme is proposed to deal with the nonholonomic constraints. With the backstepping technique and the filtered-error method, the nonlinear tracking control laws for the mobile manipulator system are constructed based on the Lyapunov stability theory. The proposed control scheme not only achieves simultaneous trajectory and velocity tracking, but also compensates for the dynamic interactions caused by the motions of the mobile platform and the two onboard manipulators. Simulation results are performed to illustrate the efficacy of the proposed control strategy.  相似文献   

15.
针对空间机械臂在轨操控过程中,重力加速度不同于地面装调阶段的重力加速度,会随着空间位置的改变而变化的问题.本文提出了一种自适应鲁棒控制策略,用于空间机械臂的末端控制,从而使在地面重力条件下装调好的空间机械臂能够在空间微重力条件下实现在轨操控任务.通过分析重力项对空间机械臂轨迹跟踪控制的影响,设计自适应律在线估计重力加速度,从而得到重力项的估计,系统的不确定性通过鲁棒控制器来补偿.基于李雅普诺夫理论证明了闭环系统的稳定性.仿真结果表明,在地面装调阶段的重力环境下和空间应用阶段的微重力环境下,该控制器对空间机械臂的末端控制均能达到较高的轨迹跟踪精度,具有重要的工程应用价值.  相似文献   

16.
针对全方向移动机器人存在非线性动态强耦合、实时重心偏移及难以实现高精度跟踪控制的问题, 本文提 出一种基于长短期记忆(LSTM)神经网络的重心位置在线预测的轨迹跟踪控制法. 首先, 建立考虑重心偏移的动力 学模型并基于LSTM神经网络训练构建其对比模型; 其次, 基于模型对比法实时估计重心偏移参数, 再基于张神经 网络(ZNN)对估计的重心偏移参数进行预测以减小估计过程引起的滞后; 最后, 基于非线性动态反馈解耦法设计数 值加速度控制算法, 且基于离散系统极点配置法分析了系统的稳定性. 仿真结果验证了所提方法相对于数值加速 度控制器与自适应控制器因能在线预测重心偏移参数完成高精度动态解耦实现控制精度的提高. 实际实验中, 所 提控制算法相比数值加速度控制及模型预测控制, 其跟踪精度明显提高, 这表明所提控制算法可显著减小重心偏移 对跟踪控制精度的影响.  相似文献   

17.
In this paper, we propose a stable neurovisual servoing algorithm for set-point control of planar robot manipulators in a fixed-camera configuration an show that all the closed-loop signals are uniformly ultimately bounded (UUB) and converge exponentially to a small compact set. We assume that the gravity term and Jacobian matrix are unknown. Radial basis function neural networks (RBFNNs) with online real-time learning are proposed for compensating both gravitational forces and errors in the robot Jacobian matrix. The learning rule for updating the neural network weights, similar to a back propagation algorithm, is obtained from a Lyapunov stability analysis. Experimental results on a two degrees of freedom manipulator are presented to evaluate the proposed controller.  相似文献   

18.
This paper presents a PD manipulator controller with fuzzy adaptive gravity compensation. The main idea is to use a fuzzy adaptive controller to compensate for the gravity term of the robotic manipulator. This controller is designed by using Lyapunov's stability theorem, which guarantees system stability. Simulation is implemented on a two‐link manipulator by using MATALAB and SIMULINK. The results show that this fuzzy adaptive controller makes the manipulator trajectory converge to a desired position. Compared with other proposed fuzzy adaptive manipulator controllers, the PD manipulator controller with fuzzy adaptive gravity compensation is conceptually and structurally simpler and guarantees zero position error. ©2000 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号