首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 343 毫秒
1.
ICP技术在化合物半导体器件制备中的应用   总被引:1,自引:0,他引:1  
姚刚  石文兰 《半导体技术》2007,32(6):474-477,485
介绍了ICP刻蚀工艺技术原理和在化合物半导体器件制备中的应用,包括ICP刻蚀技术中的低温等离子体的形成机理、等离子体与固体表面的相互作用等,并对影响ICP刻蚀结果的因素进行了分析.研究了不同的工艺气体配比、腔体工作压力、ICP源功率和射频源功率对刻蚀的影响,并初步得到了一种稳定、刻蚀表面清洁光滑、图形轮廓良好、均匀性较好和刻蚀速率较高的干法刻蚀工艺.  相似文献   

2.
深入研究了GaP材料在高密度感应耦合等离子体刻蚀系统中刻蚀选择比和刻蚀速率随刻蚀系统的源功率、射频功率、腔室压强的变化规律,即通过改变其中一个参数而保持其它参数不变来得出变化规律;同时将刻蚀GaP材料应用到红光LED制作,即电流阻挡层和表面粗化这两种工艺中,通过大量试验,得到了刻蚀形貌和最优的刻蚀条件,制作阻挡层的最优条件为:BCl3流量比为3/1,ICP功率为600W,RF功率为100W,腔室压强为1.0×10-2Pa;表面粗化时只用BCl3气体刻蚀,表面粗化后LED的光强提高了30%。  相似文献   

3.
为了提高金刚石薄膜电学和辐射响应性能,在石英钟罩式MPCVD装置中,采用微波空气等离子体刻蚀处理来提高金刚石薄膜的纯度、电阻率和辐射剂量计响应性能,研究了不同的微波功率、气体流量、处理时间对金刚石薄膜电阻率、X光响应的影响,结果表明,空气等离子体中高能、高活性的氧和氮能有效刻蚀薄膜表面的石墨等非金刚石相,提高膜的纯度,使金刚石薄膜的电阻率从1.11×109Ω.cm提高到1.83×1014Ω.cm,提高了5~6个数量级,且处理后的金刚石薄膜X射线响应灵敏度提高了15倍,并获得了最佳的空气等离子体刻蚀条件。空气等离子体刻蚀处理是一种易于掌控的刻蚀方法,可有效提高金刚石薄膜表面质量,且资源丰富,价格便宜。  相似文献   

4.
首先用CVD法制备金刚石厚膜,接着在其表面利用氢等离子体辅助刻蚀,然后在铁薄膜的催石墨化作用下,对金刚石膜的表面进行了选择性的刻蚀.结果表明,在氢等离子体的辅助作用下,铁薄膜可以持续对CVD金刚石膜进行刻蚀;如果控制铁薄膜的形状和厚度,可以实现对CVD金刚石膜表面较精确的图形化刻蚀.该技术有望成为一种新的刻蚀金刚石膜的方法.  相似文献   

5.
采用电感耦合等离子体(ICP)刻蚀系统,研究了氧等离子体表面处理对AlGaN/GaN HEMT欧姆接触电阻的影响。利用能量色散X射线光谱仪、光致发光谱和原子力显微镜以及电学测试设备对处理前后样品进行表征分析。结果表明,在最佳的氧等离子体处理条件(ICP功率250 W,射频功率60 W,压强0.8 Pa,氧气流量30 cm3/min,时间5 min)下,欧姆接触电阻为0.41Ω·mm,比参照样品接触电阻降低了约69%。分析认为经过氧等离子体处理后,在近表面处产生了一定数量的N空位缺陷,这些N空位表现为浅能级施主掺杂,有利于欧姆接触的形成。通过采用氧等离子体表面处理工艺制备的AlGaN/GaN HEMT,在+2 V的栅极偏压下获得了0.77 A/mm的最大漏极饱和电流。  相似文献   

6.
利用感应耦合等离子体(ICP)进行了InSb刻蚀研究。为了实现高的刻蚀速率同时保证光滑的刻蚀表面,研究中在CH4/H2/Ar气氛中引入了Cl2。研究发现,对InSb的刻蚀速率随Cl2含量及ICP功率的升高而线性增加。当Cl2含量增加到超过12%或ICP功率大于900 W时,刻蚀表面变得粗糙,而易引起刻蚀损伤的直流偏压随ICP功率的升高而降低。此现象归因于刻蚀副产物InCl3在样品表面的聚集进而妨碍均匀刻蚀反应所致。当样品温度从20℃提高到120℃,刻蚀速率及表面粗糙度无明显变化。通过试验研究,实现了对InSb的高速率、高垂直度刻蚀,刻蚀速率大于500 nm/min,对SiO2掩模刻蚀选择比大于6,刻蚀表面光洁,刻蚀垂直度可达80°。  相似文献   

7.
用于垂直腔面发射激光器的GaAs/AlGaAs的ICP刻蚀工艺研究   总被引:1,自引:0,他引:1  
采用电感耦合等离子体(ICP)刻蚀设备对应用于垂直腔面发射激光器的GaAs/AlGaAs材料进行刻蚀工艺研究。该刻蚀实验采用光刻胶作为刻蚀掩模,Cl2/BCl3作为刻蚀工艺气体,通过实验分析总结了ICP源功率、射频偏压功率和腔体压强对GaAs/AlGaAs材料和掩模刻蚀速率的影响。利用扫描电子显微镜观察不同参数条件对样品侧壁垂直度和底部平坦度的影响。最终在保证高刻蚀速率的前提下,通过调整优化各工艺参数,得到了侧壁光滑、底部平坦的圆台结构。  相似文献   

8.
运用Cl2/N2等离子体系统,系统研究了ICP刻蚀中ICP功率、RF功率、反应室压力和Cl2百分比对p型GaN材料的物理表面形貌和欧姆接触特性的影响.原子力显微镜显示,在文中所用的刻蚀条件范围内,刻蚀并没有引起表面形貌较大的变化,刻蚀表面的均方根粗糙度在1.2nm以下.结果还显示,已刻蚀p-GaN材料的电特性与物理表面形貌没有直观联系,刻蚀后欧姆接触特性变差更多地是因为刻蚀中浅施主能级的引入,使表面附近空穴浓度降低所致.  相似文献   

9.
采用Cl2/BCl3/Ar感应耦合等离子体对InP/In0.55Ga0.45As/InP进行了刻蚀。讨论了不同的气体组分、ICP功率、直流自偏压下对刻蚀速率、表面粗糙度的影响。初步得到了一种稳定、刻蚀表面清洁光滑、图形轮廓良好、均匀性好和刻蚀速率较高的工艺。利用此工艺制作的8元InP/In0.55Ga0.45As/InP(PIN)探测器,峰值探测率为1.04×1012cmHz1/2W-1。  相似文献   

10.
感应耦合等离子体(ICP)刻蚀在AlGaN基紫外探测器台面制作中起着重要作用。在对比了ICP与RIE,ECR等干法刻蚀技术优缺点的基础上,采用Ni作为掩膜,Cl2/Ar/BCl3作为刻蚀气体,对金属有机化学气相淀积生长的n-Al0.45Ga0.55N进行了ICP刻蚀研究。刻蚀速率随着ICP直流偏压的增加而增加,刻蚀速率随着ICP功率的增加先增加较快后增加缓慢。最后结合刻蚀表面的扫描电镜(SEM)分析和俄歇电子能谱(AES)深度分析对刻蚀结果进行了讨论。分析表明,在满足刻蚀表面形貌的同时,较低的直流偏压下刻蚀速率较慢,但损伤较小,这对于制备高性能的紫外探测器是有利的。  相似文献   

11.
介绍了利用ICP设备,使用SF6基气体对4H-SiC衬底进行背面通孔刻蚀的技术。研究了金属刻蚀掩模、刻蚀气体中O2含量的变化、反应室压力、RF功率和ICP功率等各种条件对刻蚀结果产生的影响,重点对刻蚀气体中O2含量和反应室压力两个条件进行了优化。通过对刻蚀结果的分析,得出了适合当前实际工艺的优化条件,实现了厚度为100μm、直径为70μm的SiC衬底GaN HEMT和单片电路的背面通孔刻蚀,刻蚀速率达700nm/min,SiC和金属刻蚀选择比达到60∶1。通过对工艺条件的优化,刻蚀出倾角为75°~90°的通孔。  相似文献   

12.
运用Cl2/N2等离子体系统,系统研究了ICP刻蚀中ICP功率、RF功率、反应室压力和Cl2百分比对p型GaN材料的物理表面形貌和欧姆接触特性的影响.原子力显微镜显示,在文中所用的刻蚀条件范围内,刻蚀并没有引起表面形貌较大的变化,刻蚀表面的均方根粗糙度在1.2nm以下.结果还显示,已刻蚀p-GaN材料的电特性与物理表面形貌没有直观联系,刻蚀后欧姆接触特性变差更多地是因为刻蚀中浅施主能级的引入,使表面附近空穴浓度降低所致.  相似文献   

13.
应用感应耦合等离子体技术首次实现了对锑化铟薄膜的干法刻蚀。朗缪尔探针诊断结果表明 :射频电源功率为 2 0 0 W时 ,在刻蚀样品附近的等离子体离子密度最大达 6.71 70× 1 0 1 0 cm- 3。以 CCl F2 为刻蚀气体 ,进气流量 2 m L/min,RF功率 2 0 0 W,等离子体反应刻蚀运行气压 7.98Pa时 ,对 In Sb-In薄膜进行了感应耦合等离子体干法刻蚀 ,获得刻蚀图形 ,宽深比为 5  相似文献   

14.
报道了GaAs/AlAs的电感耦合等离子体(ICP)选择性干法刻蚀,刻蚀气体为SiCl4/SF6混合物.研究了在不同SiCl4/SF6气体配比、RF偏压电源功率和气室压力下,GaAs,AlAs的平均刻蚀速率与二者的选择比.合适的SiCl4/SF6气体比例(15/5sccm),低的RF偏压电源功率和高的气室压力将加强AlF3非挥发性生成物的形成,进而提高GaAs/AlAs的选择比.在SiCl4/SF6气体比例为15/5sccm,RF偏压电源功率为10W,主电源功率为500W,气室压力为2Pa时,GaAs/Al-As的选择比达1500以上.采用喇曼光谱仪对不同RF偏压电源功率和气室压力下,GaAs衬底被刻蚀面等离子体损伤进行了测试,表面形貌和被刻蚀侧壁分别采用原子力显微镜(AFM)和扫描电镜(SEM)进行观察.  相似文献   

15.
Optimized fabrication of submicron-sized features in gallium nitride (GaN) with the use of inductively coupled plasma (ICP) dry etching, based on SiCl4/Cl2/Ar gas mixture, is presented. Dense periodic patterns, i.e., 400-nm-period gratings, were transferred into a gallium nitride waveguide under different etching conditions. ICP power, radiofrequency (RF) power, chamber pressure, and Ar/Cl2 gas mixing ratio were altered during the experiment. Depths of fabricated grating couplers up to 670 nm were achieved. The most suitable etching conditions are discussed with the assessment based on etching selectivity, scanning electron microscopy (SEM) observation of grating tooth slope, hard-mask erosion process, and etched surface morphology.  相似文献   

16.
This paper mainly describes fabrication of two-dimensional GaAs-based photonic crystals with low nanometer scale air-hole arrays using an inductively coupled plasma (ICP) etching system. The sidewall profile and surface characteristics of the photonic crystals are systematically investigated as a function of process parameters including ICP power, RF power and pressure. Various ICP powers have no significant effect on the verticality of air-hole sidewall and surface smoothness. In contrast, RF power and chamber pressure play a remarkable role in improving sidewall verticality and surface characteristics of photonic crystals indicating different etching mechanisms for low nanometer scale photonic crystals. The desired photonic crystals have been achieved with hole diameters as low as 130 nm with smooth and vertical profiles by developing a suitable ICP processes. The influence of the ICP parameters on this device system are analyzed mainly by scanning electron microscopy. This fabrication approach is not limited to GaAs material, and may be efficiently applied to the development of most two-dimensional photonic crystal slabs.  相似文献   

17.
本文主要描述了用感应耦合等离子刻蚀系统(ICP)制作具有低纳米级空气孔阵列二维GaAs基光子晶体的过程。通过改变ICP功率,RF功率以及腔压三个参数,对光子晶体空气孔的侧壁和表面特性进行了系统的研究。结果表明,ICP功率的变化对空气孔侧壁和表面光滑度没有明显的影响,相反,RF功率和腔压对其起着重要的作用。最后通过优化各种过程参数,成功地获得了具有垂直平滑,直径约为130nm空气孔的光子晶体。本文ICP系统参数对光子晶体特性的影响主要通过扫描电镜进行分析,另外这种制作方法不局限于GaAs 基光子晶体,也可以应用于其它材料光子晶体的制作.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号