首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 399 毫秒
1.
Polyamide‐11 (PA11)/clay nanocomposites were prepared by in situ intercalative polymerization. The crystal morphology and crystallization kinetics of these nanocomposites were investigated via polarized light microscopy (PLM), small‐angle laser scattering (SALS) and differential scanning calorimetry (DSC). PA‐11 can crystallize into well‐formed spherulites, while only very tiny crystallites were observed by PLM and SALS for the nanocomposites. Both isothermal and non‐isothermal crystallization methods were employed to investigate the crystallization kinetics by DSC. Both techniques showed an increased crystallization rate with the addition of clay. However, the Avrami exponent decreased with the addition of clay in isothermal crystallization but showed a wide range of values depending on the cooling rate in the non‐isothermal crystallization. The changes in crystal morphology and crystallization kinetics can be understood as being due to the ‘supernucleating’ effect of the nanodispersed clay layers. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
In this study, polyamide 6,6 (PA 6,6)-based nanocomposites were prepared using a twin-screw extruder. One commercial organo-montmorillonite (denoted as 30B) and one maleated polyolefin elastomer (denoted as POEMA) served as the reinforcing filler and toughener, respectively. The X-ray diffraction (XRD), scanning electron microscopy combined with energy dispersive spectroscopy (SEM/EDS), and transmission electron microscopy (TEM) results confirmed the nano-scaled dispersion of 30B in the composites. The presence of POEMA slightly depreciated the dispersibility of 30B. Differential scanning calorimetry (DSC) results indicated that the addition of 30B accelerated the crystallization of PA 6,6, whereas the simultaneous additions of 30B and POEMA led to a reverse effect. Complex melting behaviors, mainly associated with the “recrystallization/reorganization” of PA 6,6 crystals upon heating, were observed for neat PA 6,6 and the nanocomposites. The presence of exfoliated/intercalated 30B hampered the “recrystallization/reorganization” of PA 6,6 crystals. The thermal stability enhancement of PA 6,6 after the addition of 30B and/or POEMA was confirmed using thermogravimetric analysis (TGA). The rigidity, including storage modulus, Young's modulus and flexural modulus, of PA 6,6 increased after adding 30B. However, these properties declined after the further incorporation of POEMA. The PA 6,6/POEMA/30B nanocomposites basically displayed balanced properties between those of the neat PA 6,6 and PA 6,6/POEMA blend.  相似文献   

3.
Polyamide 6,6 (PA 6,6)/organically modified montmorillonite (OMMT) nanocomposites were prepared by a novel method, using direct interfacial polymerization of an aqueous hexamethylene diamine and a nonaqueous adipoyl chloride in dichloromethane solution containing different amounts of OMMT dispersed nanoparticles. The state of dispersion of OMMT in the PA 6,6 matrix was investigated by means of X‐ray diffraction, as well as transmission electronic microscopy. The results indicated that the OMMT nanoparticles were dispersed homogeneously and nearly exfoliated in the PA 6,6 matrix. The random arrangement of clay platelets in the PA 6,6 matrix, exfoliation, and intercalation of clays between the PA 6,6 matrix were distinguished. The amount of the incorporated OMMT in the PA 6,6 matrix was determined by means of TGA technique. Furthermore it was found that addition of a small amount of OMMT dramatically improved the thermal stability of PA 6,6. The TGA thermograms of all the synthesized nanocomposite samples showed an interesting unexpected lag in the weight loss at high temperatures, which could be another evidence for formation of fully exfoliated nanocomposites structures, with improved thermal stability. Nucleating effect of the OMMT nanoparticles and their influence on crystallization behavior of PA 6,6 was confirmed by DSC. Finally it is concluded that the in situ interfacial polycondensation is a suitable method for synthesis of nanocomposites with well dispersed structures and enhanced properties. POLYM. COMPOS., 28:733–738, 2007. © 2007 Society of Plastics Engineers  相似文献   

4.
Crystallization kinetics of polymer/clay systems was the subject of numerous investigations, but still there are some ambiguities in understanding thermal behavior of such systems under isothermal and nonisothermal circumstances. In this work, isothermal rheokinetic and nonisothermal calorimetric analyses are combined to demonstrate crystallization kinetics of polyamide6/nanoclay (PA6/NC) nanocomposites. As the main outcome of this work, we detected different regimes of crystallization and compared them by both isothermal dynamic rheometry and nonisothermal differential scanning calorimetry (DSC), which has not been simultaneously addressed yet. A novel analysis, somehow different from the common ones, is used to convert the storage modulus data to crystallinity values leading to more reasonable Avrami parameters in isothermal crystallization. It was found based on isothermal rheokinetic studies that increase of NC content and shear rate are responsible for erratic behavior of Avrami exponent and crystallization rates. Optimistically, however, isothermal crystallization by rheometer was confirmed by DSC. Nonisothermal calorimetric evaluations suggested an accelerated crystallization of PA6 upon increasing NC content and cooling rate. The crystallization behavior was quantified applying Ozawa (r2 between 0.070 and 0.975), and combinatorial Avrami–Ozawa (r2 between 0.984 and 0.998) models, where the latter appeared more appropriate for demonstration of nonisothermal crystallization of PA6/NC nanocomposites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46364.  相似文献   

5.
Differential scanning calorimetry (DSC) was used to investigate the isothermal and nonisothermal crystallization kinetics of polyamide11 (PA11)/multiwalled carbon nanotube (MWNTs) composites. The Avrami equation was used for describing the isothermal crystallization behavior of neat PA11 and its nanocomposites. For nonisothermal studies, the Avrami model, the Ozawa model, and the method combining the Avrami and Ozawa theories were employed. It was found that the Avrami exponent n decreased with the addition of MWNTs during the isothermal crystallization, indicating that the MWNTs accelerated the crystallization process as nucleating agent. The kinetic analysis of nonisothermal crystallization process showed that the presence of carbon nanotubes hindered the mobility of polymer chain segments and dominated the nonisothermal crystallization process. The MWNTs played two competing roles on the crystallization of PA11 nanocomposites: on the one hand, the MWNTs serve as heterogeneous nucleating agent promoting the crystallization process of PA11; on the other hand, the MWNTs hinder the mobility of the polymer chains thus retarding the crystal growth process of PA11. The activation energies of PA11/MWNTs composites for the isothermal and nonisothermal crystallization are lower than neat PA11. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

6.
The nanocomposites of polyamide1010 (PA1010) filled with carbon nanotubes (CNTs) were prepared by melt mixing techniques. The isothermal melt‐crystallization kinetics and nonisothermal crystallization behavior of CNTs/PA1010 nanocomposites were investigated by differential scanning calorimetry. The peak temperature, melting point, half‐time of crystallization, enthalpy of crystallization, etc. were measured. Two stages of crystallization are observed, including primary crystallization and secondary crystallization. The isothermal crystallization was also described according to Avrami's approach. It has been shown that the addition of CNTs causes a remarkable increase in the overall crystallization rate of PA1010 and affects the mechanism of nucleation and growth of PA1010 crystals. The analysis of kinetic data according to nucleation theories shows that the increment in crystallization rate of CNTs/PA1010 composites results from the decrease in lateral surface free energy. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3794–3800, 2006  相似文献   

7.
The non‐isothermal crystallization kinetics of pure polyamide 1010 (PA1010) and PA1010/montmorillonite nanocomposite (PA1010/MMT) was investigated by differential scanning calorimetry (DSC) at various cooling rates. The Avrami analysis modified by Jeziorny and a new method developed by Mo can describe the non‐isothermal crystallization process of PA1010 and PA1010/MMT nanocomposite very well. The difference in the value of exponent n between PA1010 and PA1010/MMT nanocomposite suggests that the nano‐size montmorillonite layers act as nucleation agents of PA1010. The values of half‐time of crystallization and crystallization rate coefficient (CRC) show that the crystallization rate of PA1010/MMT nanocomposite is faster than that of PA1010 at a given cooling rate. Polym. Eng. Sci. 44:861–867, 2004. © 2004 Society of Plastics Engineers.  相似文献   

8.
Toluene 2, 4‐diisocyanate (TDI) functionalized multiwalled carbon nanotubes (MWNTs‐NCO) were used to prepare monomer casting polyamide 6 (MCPA6)/MWNTs nanocomposites via in situ anionic ring‐opening polymerization (AROP). Isocyanate groups of MWNTs‐NCO could serve as AROP activators of ?‐caprolactam (CL) in the in situ polymerization. Fourier transform infrared (FTIR) showed that a graft copolymer of PA6 and MWNTs was formed in the in situ polymerization. MWNTs‐PA6 covalent bonds of the graft copolymer constituted a strong type of interfacial interaction in the nanocomposites and increased the compatibility of MWNTs and MCPA6 matrix. The nanocomposites were characterized for the morphology, mechanical, crystallization, and thermal properties through field emission transmission electron microscopy (FETEM), tensile testing, differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA). FETEM analysis showed that MWNTs were homogeneously dispersed in MCPA6 matrix. The initial tensile strengths and tensile modulus of the nanocomposite with 1.5 wt % loading of MWNTs were enhanced by about 16 and 13%, respectively, compared with the corresponding values for neat MCPA6. DSC analysis indicated that the crystallization temperature of the nanocomposites was increased by 8°C by adding 1.5 wt % MWNTs compared with pure MCPA6. Besides, it was found that the thermal stability of MCPA6 was improved by the addition of the MWNTs. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
The nanostructure, morphology, and thermal properties of polyamide 6 (PA6)/clay nanocomposites were studied with X‐ray scattering, differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The wide‐angle X‐ray diffraction (WAXD) and TEM results indicate that the nanoclay platelets were exfoliated throughout the PA6 matrix. The crystallization behavior of PA6 was significantly influenced by the addition of clay to the polymer matrix. A clay‐induced crystal transformation from the α phase to the γ phase for PA6 was confirmed by WAXD and DSC; that is, the formation of γ‐form crystals was strongly enhanced by the presence of clay. With various clay concentrations, the degree of crystallinity and crystalline morphology (e.g., spherulite size, lamellar thickness, and long period) of PA6 and the nanocomposites changed dramatically, as evidenced by TEM and small‐angle X‐ray scattering results. The thermal behavior of the nanocomposites was investigated with DSC and compared with that of neat PA6. The possible origins of a new clay‐induced endothermic peak at high temperature are discussed, and a model is proposed to explain the complex melting behavior of the PA6/clay nanocomposites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1191–1199, 2007  相似文献   

10.
pCBT/MWCNT nanocomposites were prepared by in situ polymerization of CBT after solid‐phase HEBM of the polymerization catalyst containing CBT with MWCNT. The crystallinity and crystallization behavior of the pCBT nanocomposites were studied by WAXS and DSC. The MWCNTs did not affect the crystallinity of the isothermally produced pCBT significantly, but acted as nucleation agents during the crystallization of pCBT from its melt. pCBT/MWCNT nanocomposites were subjected to DMTA, static flexure, and dynamic Charpy impact tests. The flexural modulus, strength, and impact strength from these tests all went through a maximum as a function of the MWCNT content. Optimum properties were found in the MWCNT range of 0.25–0.5 wt.‐%.

  相似文献   


11.
The melting/crystallization behavior and isothermal crystallization kinetics of high‐density polyethylene (HDPE)/barium sulfate (BaSO4) nanocomposites were studied with differential scanning calorimetry (DSC). The isothermal crystallization kinetics of the neat HDPE and nanocomposites was described with the Avrami equation. For neat HDPE and HDPE/BaSO4 nanocomposites, the values of n ranges from 1.7 to 2.0. Values of the Avrami exponent indicated that crystallization nucleation of the nanocomposites is two‐dimensional diffusion‐controlled crystal growth. The multiple melting behaviors were found on DSC scan after isothermal crystallization process. The multiple endotherms could be attributed to melting of the recrystallized materials or the secondary lamellae caused during different crystallization processes. Adding the BaSO4 nanoparticles increased the equilibrium melting temperature of HDPE in the nanocomposites. Surface free energy of HDPE chain folding for crystallization of HDPE/BaSO4 nanocomposites was lower than that of neat HDPE, confirming the heterogeneous nucleation effect of BaSO4. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

12.
Santosh D. Wanjale 《Polymer》2006,47(18):6414-6421
Poly(1-butene)/MWCNT nanocomposites were prepared by simple melt processing technique. Crystallization, crystal-to-crystal phase transformation and spherulitic morphology were studied using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and optical microscopy (OM). The non-isothermal crystallization exhibited higher values of Zt derived from Avrami theory and lower values of F(T) obtained from Avrami-Ozawa analysis, while the isothermal crystallization revealed a significant increase in crystallization temperatures and lower crystallization half times compared to pristine PB. The observed changes in the crystallization kinetics were ascribed to the enhanced nucleation of PB in the presence of MWCNT. The nucleating activity calculated from the non-isothermal crystallization data revealed that the MWCNTs provide an active surface for the nucleation of PB. The optical micrographs exhibited significantly smaller crystallites with disordered morphology for the nanocomposites compared to the well defined spherulitic morphology for pristine PB. The rate of phase transformation from kinetically favored tetragonal to thermodynamically stable hexagonal form was noticeably enhanced as evidenced by the reduction in the half time for phase transformation from 58 h to 25 h for PB reinforced with 7% MWCNT.  相似文献   

13.
Biodegradable poly(butylene succinate‐co‐ethylene glycol) (PBSG)/multiwalled carbon nanotube (MWCNT) nanocomposites were successfully prepared through physical blending and silication between PBSG and acyl aminopropyltriethoxysilane functionalized multiwalled carbon nanotube (MWCNT‐APTES). Nuclear magnetic resonance (NMR) spectra observations revealed that the PBSG chains were covalently attached to the MWCNT‐APTES by hydrolysis. PBSG/MWCNT‐APTES nanocomposites after hydrolysis showed excellent interfacial compatibility between PBSG and MWCNT‐APTES, which was helpful for the dispersion of MWCNT in the PBSG matrix. The incorporation of MWCNT‐APTES accelerated the crystallization of PBSG in the nanocomposites for both approaches of physical blending and hydrolysis due to the heterogeneous nucleation effect of MWCNT while the crystal structure of PBSG was remained. Furthermore, the crystallization rate of PBSG in PBSG/MWCNT‐APTES nanocomposites after hydrolysis was slower than that in the nanocomposite by physical blend. The tensile strength and modulus of the nanocomposites increased about 6% and 11% with the addition of only 1 wt% MWCNT‐APTES compared with that of neat PBSG, and was larger for the PBSG/MWCNT‐APTES nanocomposites after hydrolysis. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

14.
The isothermal crystallization behavior of poly(L ‐lactic acid)/organo‐montmorillonite nanocomposites (PLLA/OMMT) with different content of OMMT, using a kind of twice‐functionalized organoclay (TFC), prepared by melt intercalation process has been investigated by optical depolarizer. In isothermal crystallization from melt, the induction periods (ti) and half times for overall PLLA crystallization (100°C ≤ Tc ≤ 120°C) were affected by the temperature and the content of TFC in nanocomposites. The kinetic of isothermal crystallization of PLLA/TFC nanocomposites was studied by Avrami theory. Also, polarized optical photomicrographs supplied a direct way to know the role of TFC in PLLA isothermal crystallization process. Wide angle X‐ray diffraction (WAXD) patterns showed the nanostructure of PLLA/TFC material, and the PLLA crystalline integrality was changed as the presence of TFC. Adding TFC led to the decrease of equilibrium melting point of nanocomposites, indicating that the layered structure of clay restricted the full formation of crystalline structure of polymer. The specific interaction between PLLA and TFC was characterized by the Flory‐Huggins interaction parameter (B), which was determined by the equilibrium melting point depression of nanocomposites. The final values of B showed that PLLA was more compatible with TFC than normal OMMT. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

15.
Titanium dioxide (TiO2) nanoparticles were pretreated with excessive toluene‐2,4‐diisocyanate (TDI) to synthesize TDI‐functionalized TiO2 (TiO2‐NCO), and then polymeric nanocomposites consisting of polyamide 6 (PA6) and functionalized‐TiO2 nanoparticles were prepared via a melt compounding method. The interfacial interaction between TiO2 nanoparticles and polymeric matrix has been greatly improved due to the isocyanate ( NCO) groups at the surface of the functionalized‐TiO2 nanoparticles reacted with amino groups ( NH2) or carboxyl ( COOH) groups of PA6 during the melt compounding and resulted in higher tensile and impact strength than that of pure PA6. The nonisothermal crystallization kinetics of PA6/functionalized TiO2 nanocomposites was investigated by differential scanning calorimetry (DSC). The nonisothermal crystallization DSC data were analyzed by the modified‐Avrami (Jeziorny) methods. The results showed that the functionalized‐TiO2 nanoparticles in the PA6 matrix acted as effective nucleation agents. The crystallization rate of the nanocomposites obtained was faster than that of the pure PA6. Thus, the presence of functionalized‐TiO2 nanoparticles influenced the mechanism of nucleation and accelerated the growth of PA6 crystallites. POLYM. COMPOS., 35:294–300, 2014. © 2013 Society of Plastics Engineers  相似文献   

16.
Differential scanning calorimeter (DSC) and X‐ray diffraction methods were used to investigate the isothermal and nonisothermal crystallization behavior and crystalline structure of syndiotactic polystyrene (sPS)/clay nanocomposites. The sPS/clay nanocomposites were prepared by mixing the sPS polymer solution with the organically modified montmorillonite. DSC isothermal results revealed that introducing 5 wt% of clay into the sPS structure causes strongly heterogeneous nucleation, inducing a change of the crystal growth process from mixed three‐dimensional and two‐dimensional crystal growth to two‐dimensional spherulitic growth. The activation energy of sPS drastically decreases with the presence of 0.5 wt% clay and then increases with increasing clay content. The result indicates that the addition of clay into sPS induces the heterogeneous nucleation (a lower ΔE) at lower clay content and then reduces the transportation ability of polymer chains during crystallization processes at higher clay content (a higher ΔE). We studied the non‐isothermal melt‐crystallization kinetics and melting behavior of sPS/clay nanocomposites at various cooling rates. The correlation among crystallization kinetics, melting behavior and crystalline structure of sPS/clay nanocomposites is discussed. Polym. Eng. Sci. 44:2288–2297, 2004. © 2004 Society of Plastics Engineers.  相似文献   

17.
The preparation of polyamide‐6/clay, high‐density polyethylene/clay, and high‐density polyethylene/ polyamide‐6/clay nanocomposites is considered. X‐ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier Transform Infrared (FTIR) measurements show that the clay enhances the crystallization of the γ‐form of polyamide‐6. The clay also acts as a nucleation agent and causes a reduction of spherulitte size. Scanning electron microscopy (SEM) analysis of fracture surfaces shows that the clay reduces the PA‐6 particle size in the HDPE/PA‐6/clay nanocomposites and changes the morphology. Mechanical properties and the effect of maleated polyethylene are also reported.  相似文献   

18.
To obtain isotactic polypropylene (iPP) nanocomposites with high β‐crystal content, TMB5, calcium pimelate and calcium pimelate supported on the surface of nano‐CaCO3 were used as β‐nucleating agent and MWCNT filled β‐nucleated iPP nanocomposites were prepared. The effect of different β‐nucleating agent and MWCNT on the crystallization behavior and morphology, melting characteristic and β‐crystal content of β‐nucleated iPP nanocomposites were investigated by DSC, XRD and POM. The results indicated that addition of MWCNT increased the crystallization temperature of iPP and MWCNT filled iPP nanocomposites mainly formed α‐crystal. The β‐nucleating agent can induce the formation of β‐crystal in MWCNT filled iPP nanocomposites. The β‐nucleating ability and β‐crystal content in MWCNT filled β‐nucleated iPP nanocomposites decreased with increasing MWCNT content and increased with increasing β‐nucleating agent content due to the nucleation competition between MWCNT and β‐nucleating agents. It is found that the calcium pimelate supported on the surface of inorganic particles as β‐nucleating agent has stronger heterogeneous β‐nucleation than calcium pimelate and TMB5. The MWCNT filled iPP nanocomposites with high β‐crystal content can be obtained by supported β‐nucleating agent. POLYM. COMPOS., 36:635–643, 2015. © 2014 Society of Plastics Engineers  相似文献   

19.
Poly(ethylene oxide) (PEO) based nanocomposites were prepared by the dispersion of multiwall carbon nanotubes (MWCNTs) in aqueous solution. MWCNTs were added up to 4 wt % of the PEO matrix. The dynamic viscoelastic behavior of the PEO/MWCNT nanocomposites was assessed with a strain‐controlled parallel‐plate rheometer. Prominent increases in the shear viscosity and storage modulus of the nanocomposites were found with increasing MWCNT content. Dynamic and isothermal differential scanning calorimetry studies indicated a significant decrease in the crystallization temperature as a result of the incorporation of MWCNTs; these composites can find applications as crystallizable switching components for shape‐memory polymer systems with adjustable switching temperatures. The solid‐state, direct‐current conductivity was also enhanced by the incorporation of MWCNTs. The dispersion level of the MWCNTs was investigated with scanning electron microscopy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
By means of a die‐drawing technique in the rubbery state, the effect of the orientation of the microstructure on the dielectric properties of polypropylene (PP)/multiwalled carbon nanotube (MWCNT) nanocomposites was examined in this study. The viscoelastic behavior of the PP/MWCNT nanocomposites with MWCNT weight loadings ranging from 0.25 to 5 wt % and the dielectric performance of the stretched PP/MWCNT nanocomposites at different drawing speeds and drawing ratios were studied to obtain insight into the influences of the dispersion and orientation state of the MWCNTs and matrix molecular chains. A viscosity decrease (ca. 30%) of the PP/MWCNT‐0.25 wt % (weight loading) melt was obviously due to the free volume effect. Differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction were adopted to detect the orientation structure and the variation of crystal morphology of the PP/MWCNTs. Melting plateau regions, which indicated the mixed crystallization morphology for the stretched samples, were found in the DSC patterns instead of a single‐peak for the unstretched samples. We found that the uniaxial stretching process broke the conductive MWCNT networks and consequently increased the orientation of MWCNTs and molecular chains along the tensile force direction; this led to an improvement in the dielectric performance. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42893.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号