首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李有余  余力  高扬 《粉末冶金工业》2024,(1):140-147+159
钛合金具有高强轻质耐高温的特点,因而成为拥有巨大前景的航空结构材料。传统的机械制造工艺难度大、成本高,限制了钛合金的应用。增材制造(AM)作为新兴的先进制造技术,可以通过逐层加工的方式制造出具有较高三维精度的金属部件,从而实现钛合金的近净形加工。因此,首先介绍了球形钛合金粉末制备技术,其中包括等离子旋转电极雾化法(PREP)、电极感应气体雾化法(EIGA)、等离子体雾化(PA)和等离子球化技术(PS)等,对比4种球形钛合金粉末的制备技术和优缺点,以及在航空增材制造的应用,包括激光选区熔化(SLM)、电子束选区熔化(EBSM)和激光熔化沉积(LMD)等,总结了不同钛合金粉末制备技术在航空增材制造的应用特点和发展趋势,并指出钛合金增材制造未来发展的关键是低间隙钛粉的制备,增材制造设备高精度、高效率和大型化将是未来的发展趋势。  相似文献   

2.
TiAl基合金具有优异的高温性能,是一种极具竞争力的新型轻质高温结构材料,在汽车、军工、航空航天等领域具有广阔的发展潜力和应用前景.然而,TiAl基合金室温脆性较大,成形困难,是阻碍其发展与应用的主要瓶颈之一.增材制造基于"离散+堆积"的成形思想,以激光、电子束、电弧等作为高能热源,通过熔化丝材或者粉末,逐层堆积实现零...  相似文献   

3.
搭建了双电弧集成冷丝复合焊接系统,研究了冷丝不同位置对焊接过程的影响机理,其中包括冷丝作用位置对其加热熔化作用及表面成形的影响。实验结果表明:冷丝从两引导焊丝正前方送入时,熔池前端对冷丝的加热熔化作用不充分,冷丝末端会顶触熔池底部,随着冷丝的持续送进和母材的向后移动,某一时刻冷丝回弹,焊丝末端的熔滴弹出落在母材表面形成大颗粒飞溅。当冷丝从侧面送入时,熔池一侧的温度较低,影响熔池金属的流动,导致最终的焊缝成形不对称分布。当冷丝从两引导焊丝正后方送入熔池时,冷丝始终插入熔池中,焊接过程稳定,是理想的冷丝作用位置。此外,随着冷丝送丝速度的增加,两种脉冲电流模式(同相和反相)下,熔敷率均随之增加,且相差不大。同相脉冲电流下电弧对冷丝的加热熔化作用最强烈,反相脉冲电流下次之,直流模式下最弱。   相似文献   

4.
金属增材制造技术自诞生以来,经快速发展,已在诸多领域得到了广泛的应用,被列入决定未来经济的十二大颠覆性技术之一。基于丝材的金属增材制造技术由于其沉积效率高、制造成本低、制造周期短和材料利用率高,近年来成为国内外研究和应用的热点。本文以钛合金丝材为原材料,针对广泛采用的电弧/等离子弧熔丝、电子束熔丝和激光熔丝增材制造技术,分别从成形工艺参数优化、宏微观组织结构分析、后热处理组织性能调控及专用原材料开发等方面所取得的最新研究成果进行了详细论述。在此基础之上,介绍了基于钛合金丝材的增材制造在工程化应用及相关标准规范的制定情况。最后,指出钛合金丝材增材制造技术在组织和性能等方面存在的固有不足,提出了采用锻造+增材复合成形复合后处理和专用丝材研制等方法,并建立有别于传统锻造和铸造的新标准体系,有助于推广其在各领域的大规模应用。  相似文献   

5.
研究了电弧增材制造(WAAM)工艺参数、旋转摩擦加工(RFP)转速对7075铝合金堆积气孔率的影响,以及时效处理温度对堆积金属组织与性能的影响,采用优化的电弧增材制造工艺参数、旋转摩擦加工转速与时效温度,进行大型7075铝合金运载火箭过渡端框架的电弧增材-旋转摩擦复合制造及热处理强化。结果表明:保护气流量较高时引起的气体紊流现象会降低保护效果,增大堆积气孔倾向;提高负极性模数可增强丝材阴极雾化,有效清除氧化膜,减少熔池中[H]含量以降低堆积金属气孔率。通过二次回归通用旋转组合实验优化出电弧增材制造工艺为:保护气流量20 L·min-1,负极性模数9,电弧枪行进速度592 mm·min-1,送丝速度7.2 m·min-1;该工艺下堆积金属成形良好,气孔率为7.03%。旋转摩擦加工通过引起7075铝合金堆积金属塑性变形及动态再结晶消除气孔,优化出1800 r·min-1加工转速使堆积金属气孔率进一步降低至4.32%。对堆积金属进行高于120℃的时效热处理易导致α-Al晶粒与η-MgZn2相粗化,降低堆积...  相似文献   

6.
介绍了激光增材制造高熵合金的工艺方法,从成形工艺、合金元素含量(摩尔分数)、热处理工艺和增强相添加等几个方面综述了国内外激光增材制造高熵合金的研究进展,分析了激光熔化沉积和选区激光熔化成形两种主要激光增材制造技术,以及两种技术制备高熵合金的微观结构和力学性能,指出了高熵合金激光增材制造技术的发展趋势及存在的主要问题,并提出了改进措施。  相似文献   

7.
摘要:金属增材制造技术成形奥氏体不锈钢易出现与传统制备方法完全不同的非平衡亚稳微观组织,表现出独特的性能,其中激光增材制造的316L不锈钢,兼具高屈服强度、良好的伸长率以及优异的耐腐蚀性能。系统综述了近年来国内外激光增材制造316L不锈钢的研究进展,针对其高冷却速率、微熔池冶金、强非平衡凝固和复杂热履历成形条件,阐述其微观组织结构的形成机制和调控方法,以及对力学性能和腐蚀行为的影响规律,重点分析了激光增材制造316L奥氏体不锈钢的强韧化机制,最后展望增材制造奥氏体不锈钢的未来研究方向。  相似文献   

8.
金属增材制造技术具有利用率高、柔性高及快速性等特点,如果将其用于野外装备应急维修,将能有效克服传统装备应急维修方法的缺陷,提升野外装备的应急保障能力。本文对常见金属增材制造技术的成形效率、成形精度、力学性能进行对比,结合金属增材制造技术在国内外装备维修领域的应用现状以及野外装备应急维修的特点,从成形质量、成形能力、设备机动性以及抗干扰能力等几个方面展开分析,得出激光熔覆沉积以及电弧熔丝技术更适用于野外装备应急维修。最后就激光熔覆沉积以及电弧熔丝技术应用于野外装备应急维修亟待解决的问题以及今后发展趋势展开讨论。  相似文献   

9.
随着中国航空航天、舰船、轨道交通等领域关键金属构件向着大型化、一体化的方向发展,增材制造技术正逐渐成为新一代高强轻质合金结构件的重要制造手段。为突破单一机器人成形效率限制,改善增材成形件的残余应力及组织性能,多机协同式增材制造(MCAM)逐渐成为研究热点。综述了近年来国内外采用MCAM的方式成形大型金属构件的相关研究进展。MCAM技术仍处于理论探索阶段,目前仅对多机器人任务分配算法与控制进行了初步探究,尚未针对多热源协同制造的控形控性机制开展深入研究工作,距离满足大型复杂金属构件的高精、高效、形性一体化成形需求仍有一定距离。后续研究工作可围绕多热源增材组织演变行为和力学性能优化、大型构件应力变形演变机制与调控、多机器人协同在线成形检测与控制等难点开展,支撑新一代大型高强轻质合金结构件的高质量制造。  相似文献   

10.
采用激光-电弧复合焊,激光前置焊接海工钢AH36薄板。利用高速摄像分析熔滴过渡特征与影响因素。运用计算流体力学体积分数法建立固液气三相流体动力学模型。采用高斯面热源、高斯旋转体热源和双椭球热源表征复合焊热源。数值模型考虑了表面张力、电磁力、浮力、反冲压力、蒸发冷凝、蒸发换热等多种物理场的耦合作用。对熔滴过渡冲击及其对熔池形貌、流动与温度的影响进行研究。结果表明,熔滴冲击熔池可促进熔池流动与传热。熔滴过渡受电磁力与蒸气反冲压力抑制,致使大熔滴出现。适当增加激光功率可降低熔滴表面张力,增加熔滴过渡频率,减小熔滴尺寸。激光功率过大或光丝间距过小时,出现熔滴破裂与飞溅。  相似文献   

11.
球形钛合金粉末是钛合金粉末冶金近净成形的重要原材料,适用于热等静压(HIP)、增材制造(AM)、冷喷涂(CS)等先进技术,但是长久以来球形钛合金粉末的高成本低产量的特点限制了其应用范围。本文详细介绍了4种商业工程化的球形钛合金粉末制备技术,分别是超高转速等离子旋转电极(SS-PREP)、气雾化(GA)、等离子体雾化(PA)、等离子球化(PS),并分析了4种工艺的异同及特点。SS-PREP、GA、PA、PS 4种球形钛合金粉末均可应用于增材制造技术,包括激光选区熔化(SLM)和电子束选区熔化(EBM)。最后总结了不同球形钛合金制备技术的增材制造应用前景。  相似文献   

12.
采用电弧增材制造技术在7075铝合金基材上成形2024铝合金试样,研究了不同工艺参数下异质铝合金界面的成形工艺性,以及热处理前后2024/7075异质铝合金电弧增材成形界面的显微组织和力学性能。结果表明,电弧增材成形过程的热输入增加,则2024/7075异质铝合金之间的铺展效果更好;2024/7075异质铝合金电弧增材界面区域内Mg、Zn、Cu元素含量较高,沉积态界面组织第二相沿结合界面连续分布,热处理态界面组织第二相粒子呈现点状、棒状、块状弥散分布;热处理后2024/7075异质铝合金界面的抗拉强度为388MPa,与沉积态相比力学性能显著提高。  相似文献   

13.
3D打印技术是将原材料采用层层堆积法使其成型的一种增材制造新技术,目前,金属3D打印技术主要包括粉末床熔合技术(PBF)与定向能量沉积技术(DED)。PBF技术又包括选择性激光烧结技术(SLS)、选择性激光熔化成形技术(SLM)、直接金属激光烧结技术(DMLS)、电子束熔化成形技术(EBM)等。DED技术则主要包括直接金属沉积(DMD)、激光工程化净成形技术(LENS)、电子束自由成形制造(EBFFF)、电弧增材制造等。其中SLS、SLM、EBM、LENS是应用较为广泛的金属材料3D打印技术。本文主要介绍了SLS、SLM、EBM、LENS四种技术研究现状,并总结了金属3D打印技术未来可能的发展趋势。  相似文献   

14.
GH4169合金由于具有优异的高温强度、抗疲劳、耐磨损、耐腐蚀等性能,长期服役温度高达650~700℃,因而广泛应用于航空航天、核工业及石油化工等工业领域,是一种不可或缺的高温结构材料。激光熔化沉积技术因其沉积效率高、成形构件组织细密、内部质量及力学性能优异,在大型金属结构件高效、高性能制造及高价值金属构件缺陷或损伤高性能修复方面极具优势。近年来,关于GH4169合金激光熔化沉积成形/修复方面的研究及应用日益增多,该合金已成为金属增材制造技术研究及工程应用的热点材料之一。首先介绍了激光熔化沉积成形/修复GH4169合金典型沉积态组织及力学性能,然后重点从调控成形工艺、施加后续热处理、外加能量场/强制冷却、引入塑性变形等4个方面综述了当前激光熔化沉积成形/修复GH4169合金组织及力学性能调控的研究进展。最后指出了当前激光熔化沉积成形/修复GH4169合金所面临的挑战,并对未来具备潜在可行性的组织性能调控方法进行了展望。  相似文献   

15.
硬质合金是由难熔金属碳化物(WC,TiC,NbC等)和金属粘结相(如Fe,Ni和Co)组成,通过粉末混合、压制然后烧结而成。然而传统的粉末冶金成形方法模具成本高,难以形成复杂零件。相比之下,增材制造(3D打印)采用数字化叠层加工技术,能够实现快速精准的成形。研究与开发适于增材制造的硬质合金粉末是其中的关键一步,目前,增材制造的硬质合金粉末制备方法主要分为以下4类:机械合金化法、球形WC粉末表面包覆技术、喷雾干燥技术、等离子体球化技术,这4种方法在制备原理、成本和成形方法的灵活性上均有所不同。因此,综述了适用于增材制造成形的硬质合金粉末的4种制备方法,并对制备粉末的特性以及成形性能进行了对比,总结了粉末制备原理、各自的优缺点以及适用的增材制造成形工艺,希望可以推动增材制造成形硬质合金的研究发展。  相似文献   

16.
增材制造可以制造通过传统方法难以制造的复杂部件,因此在航空工业等领域中得到了大规模的应用。然而,增材制造成形部件的尺寸和几何精度以及表面质量低于传统方法成形的部件,阻碍了增材制造的进一步应用。增减材混合制造将增材制造与传统的加工手段结合,对增材制造成形的部件进行高精度数控加工,以改善部件表面光洁度以及零件的几何和尺寸精度。本文阐述了增减材混合制造的技术原理和研究进展,并指出了未来的发展方向。   相似文献   

17.
激光粉床增材制造技术是一个涉及熔池移动、快速非平衡凝固、固态相变的复杂冶金过程,该过程的非均匀快速热-力耦合易导致金属制件出现翘曲变形、裂纹及孔洞、夹杂物、晶粒异常形核与长大等缺陷,这些缺陷会对金属制件的尺寸精度、致密度及力学性能等产生不利影响。激光粉床增材制造金属制件中非金属氧化物夹杂大多为内生夹杂物,产生于金属液脱氧以及极速熔化和凝固过程中的二次氧化,其种类、尺寸、形貌以及分布等物化特性直接影响或决定了金属产品的质量与性能,也是导致金属中产生各类缺陷的重要原因之一。分析了不锈钢材料激光粉床增材制造及后续热处理过程金属中氧化物夹杂的形成和演化及其对金属零件性能的影响性,并对不锈钢金属制件中氧化物夹杂特性的调控研究进展进行了总结,为激光粉床增材制造企业生产工艺优化提供了科学指导和理论依据。  相似文献   

18.
17-4PH马氏体不锈钢具有高强高韧以及耐腐蚀等优异性能,在航空航天、核能和民用工业等领域得到广泛的应用。增材制造技术通过离散堆积的制备方法,能够实现复杂异形零部件的成形,满足装备迭代的需求。综述了国内外增材制造17-4PH的研究成果,针对增材制造微小熔池、快速熔凝、复杂热历史冶金特点,介绍影响增材制造17-4PH试样致密度的因素,阐述其相构成、微观组织和力学性能,简述后处理对17-4PH力学性能的影响规律,最后对增材制造17-4PH的发展进行展望。  相似文献   

19.
电弧增材制造(wire arc additive manufacturing, WAAM)技术被认为是制造大型钛合金构件最具前景的增材制造技术之一。然而,成形过程稳定性差、成形件表面质量及尺寸精度低是制约WAAM钛合金构件推广运用的主要瓶颈,对WAAM成形过程进行实时监测及反馈控制是解决这一难题的重要研究方向,也是当前WAAM钛合金研究的热点之一。对于WAAM钛合金的高效稳定成形而言,成形机制的研究是基础,工艺及装备的优化是保证,成形过程的监测与控制是关键。简要介绍了WAAM钛合金的成形工艺、装备及其运用,指出了成形件组织及力学性能的特点及其调控方法。通过对WAAM钛合金常见缺陷及其形成机制的分析,指出了WAAM装备设计与工艺优化的方向。总结了WAAM成形过程中基于视觉信号、电信号、声信号及多信号融合的在线监测方法,综述了成形过程控制方法及控制系统的发展。最后,对全文进行了总结,展望了未来WAAM钛合金成形与控制领域值得深入研究的方向。  相似文献   

20.
难熔金属材料具有良好的高温力学性能和高温稳定性,常用于制备耐热部件,被广泛应用于航空航天、国防工业等领域。然而,难熔金属的熔点比较高,室温塑性延展性能不佳,使用传统的加工方式制备复杂结构件时存在加工困难等问题。增材制造作为一项新兴的技术,基于三维模型数据,以激光、电子束、特殊波长光源、电弧及其多种组合作为能量源,利用“离散-堆积”成形原理制造实体部件,制备零件的尺寸可以从微米级到米级,为难熔金属复杂结构件的制备提供了新的途径。本文首先概述了增材制造技术的分类、特点及其应用,然后介绍了增材制造技术制备难熔金属的现状以及目前存在的主要问题,最后综述了增材制造工艺调控难熔金属材料微观组织和力学性能的研究进展,并对增材制造技术在难熔金属领域应用的发展方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号