首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
掺镱大模场光子晶体光纤在高峰值功率超快激光放大器中有着重要的应用价值,其研究得到了广泛关注。首先简要介绍了国内外掺镱大模场光子晶体光纤的研究进展,阐述了掺镱大模场光子晶体光纤的基本设计思路,对比说明了保偏型掺镱光子晶体光纤的设计制备方法。重点介绍了近十年来中国科学院上海光学精密机械研究所在掺镱大模场光子晶体光纤方面的研究进展。包括掺镱大模场光子晶体光纤的纤芯折射率大小和均匀性控制、光子晶体光纤微结构控制等关键技术。采用自主研制的四种芯径为40~100μm的掺镱大模场光子晶体光纤开展了皮秒脉冲激光放大实验。利用40μm芯径的保偏掺镱光子晶体光纤实现了平均功率为100 W、光束质量因子(M2)小于1.4的稳定输出,偏振消光比为12 dB。利用100μm芯径的保偏掺镱大模场光子晶体光纤实现了M2小于1.5的高光束质量脉冲放大。上述研究为掺镱大模场光子晶体光纤的国产化应用奠定了基础。  相似文献   

2.
孙若愚  刘江  谭方舟  王璞 《激光技术》2013,37(4):417-420
为了得到高单脉冲能量的百皮秒激光脉冲,采用自制的被动锁模掺镱光纤激光器获得了100ps的激光脉冲输出,在此基础上采用两级全光纤结构主振荡功率放大器进行功率放大,其中预放大级采用7m纤芯的双包层掺镱光纤做增益介质,得到平均功率160mW的稳定脉冲输出;主放大级采用20m纤芯的双包层掺镱光纤做增益介质,在抽运功率逐步增加到35.37W时,输出功率达到了16.60W,相应的单脉冲能量为1.63J,峰值功率为16.61kW。此外,主放大级输出的激光通过自制的模场转换器与光子晶体光纤(纤芯4.6m)成功熔接,得到了2.85W的白光超连续光谱,光谱波长覆盖了600nm~1700nm的检测范围。结果表明,此激光可用于超连续谱光源的产生。  相似文献   

3.
高峰值功率的超短脉冲激光器在激光精细微加工等领域具有重要应用价值。以超大模场光纤为增益介质对超短脉冲激光进行功率放大,是实现高光束质量、高峰值功率超短脉冲激光输出的有效技术手段。以脉冲宽度、重复频率可调的1030nm锁模光纤激光器为种子光源,通过多级全光纤功率预放大和以超大模场棒状光子晶体光纤(PCF)为增益介质的功率放大器,搭建了高峰值功率皮秒脉冲光子晶体光纤放大器系统。实验研究了棒状PCF放大器的输出特性,在脉冲宽度为30ps时实现了峰值功率为2.94 MW的近衍射极限激光放大输出。  相似文献   

4.
阐述了大模面积有源光纤的基本原理,介绍了有源光纤的制备过程。针对目前国内大模场有源光纤制备技术中存在的问题,从传统结构大模面积光纤的制备工艺入手,对有源光纤预制棒制备工艺进行了理论分析和实验优化,通过采用多次沉积等新技术,解决了有源区面积难以增大等问题。最终制备出纤芯直径95 μm的传统结构的超大模场有源光纤,并实现了激光输出。  相似文献   

5.
正光纤激光是继气体激光、化学激光和固体激光之后的新一代激光技术,具有体积小、电光转换效率高、寿命长、光束质量好、易维护等诸多优点。20/400纤芯直径为μm规格的有源光纤(即20μm、包层直径为400μm、数值孔径为0.06的Yb掺杂双包层大模场石英光纤)具有较大的模场面积,可有效抑制非线性效应,其较低的数值孔径与弯曲半径匹配,可  相似文献   

6.
传统的大模场光纤是通过设计光纤结构来获得大模场面积的,可以实现的模场面积只能达到几百平方微米。增益导引和折射率导引相结合是实现大模场单模光纤的一种新方法。通过分析增益因子对折射率以及归一化频率的影响,得到了光纤中各阶模式截止条件与纤芯包层折射率差和增益因子的关系。最后以包层折射率为1.5734,纤芯折射率为1.5689,纤芯半径为50μm,10%(原子数分数)重掺杂钕离子的磷酸盐光纤作为模拟计算对象,当波长为1.064μm时,得到其模场直径大于90μm。对于普通光纤,增益导引和负折射率导引相结合的方法对实现大模场单模传输很有前景。  相似文献   

7.
报道了一种基于玻璃分相技术制备大尺寸(直径为3mm,长度为270mm)掺镱(Yb3+)石英玻璃芯棒,进而制备大芯径(纤芯直径为80μm,外包层直径为400μm)掺Yb3+双包层光纤的新技术。实验测试了光纤的折射率剖面、Yb3+吸收谱以及背景损耗,并演示了其激光性能。结果表明:该光纤的纤芯折射率分布均匀,数值孔径约为0.065;Yb3+的掺杂浓度(质量分数)为1.22%,在976nm处的吸收系数为6.5dB/m,在793nm处的背景损耗为0.03dB/m;基于主控振荡器的功率放大器结构,光纤在976nm半导体激光器抽运下实现了1080nm激光输出,光纤长度为2.5m,斜率效率达到78%,最大激光输出功率为300W。玻璃分相技术为制备大尺寸、高均匀性有源石英玻璃芯棒提供了新的技术路径,在制备大芯径高掺杂光纤及具有复杂纤芯结构的有源光纤方面具有巨大潜力。  相似文献   

8.
激光二极管抽运掺Yb3+光纤放大器获得2.41W超短脉冲输出   总被引:1,自引:1,他引:0  
对国产掺镱(Yb3 )双包层大模场面积光纤超短脉冲放大器进行了系统的实验研究。以自己搭建的脉冲宽度为2.3ps,重复频率为95MHz的全固态锁模激光器作为种子源,以976nm大功率光纤耦合激光二极管为抽运源,以1.6m国产掺Yb3 双包层大模场面积光纤为增益介质,在11.2W的入纤抽运功率下,将平均功率为100mW的脉冲种子光放大到平均功率2.41W,单脉冲能量达到了25nJ,放大后脉冲的宽度(时域宽度)和光谱都有所展宽。  相似文献   

9.
为设计具有大模场面积和正常色散的光纤,提出了一种新型的同轴双芯光纤。通过在中心纤芯内引入空气孔,光纤能够拥有红移的零色散波长和提升的有效模场面积。进一步分析了光纤参数对光纤群速度色散和有效模场面积的影响。据此分别设计了具有三种不同参数条件的光纤,光纤具有宽带的正常色散工作区域,可分别覆盖1 400—1 800 nm, 1 700—2 000 nm, 2 000—2 300 nm,具有大于-5 ps/(nm·km)的群速度色散,有效模场面积可高达296μm2。提出的光纤在高功率超短脉冲光纤激光源中具有潜在的应用价值。  相似文献   

10.
微纳纤芯/包层结构大模场单模聚合物光纤设计   总被引:2,自引:2,他引:0  
提出了一种微纳纤芯/包层结构大模场单模聚合物 光纤。建立了光纤结构模型,在非 弱导近似条件下,根据波导理论,分析了微纳光纤的单模和波导特性;讨论了微纳纤芯直径 、 芯/包层折射率差以及包层直径等结构参数对微纳纤芯/包层结构聚合物光纤的模场分布、有 效 模场直径等导波特性的影响。结果表明,在传输波长λ=650nm、微纳纤芯直径Dcore=172μm、包层 直径Dclad=250μm和芯/ 包层折射率差δn=0.128时,可获得有效模场直径达126.56μm和芯内能流比为10.66% 的大模场单模聚合物光纤。  相似文献   

11.
基于耦合非线性薛定谔方程(CNLSEs),利用分裂步长傅里叶方法(SSFM),研究了超短光脉冲在有源三芯非线性光纤耦合器中的传输和开关特性.重点分析了在一阶色散耦合系数和二阶色散耦合系数的影响下,线性增益系数和有限增益带宽对脉冲传输和开关特性的影响.研究表明,线性增益系数能增大开关陡峭性、降低开关临界能量、提高开关效率;虽然有限增益带宽使耦合器开关特性变差,但是它不仅能显著抑制由线性增益系数引起的脉冲压缩和放大,而且还能有效抑制由一阶色散耦合系数引起的脉冲展宽和分离以及由二阶色散耦合系数引起脉冲高频振荡,使光脉冲在三纤芯间呈现出类似无源光纤耦合器那样的周期性耦合传输特性.  相似文献   

12.
利用啁啾脉冲增益饱和放大特性,搭建了一台基于泵浦分束结构的波长可调谐1μm全保偏光纤超短脉冲激光器。该激光器由超短脉冲激光振荡器和超短脉冲激光放大器组成,控制注入到放大器的啁啾脉冲能量,使放大器处于增益饱和或非饱和状态,从而实现激光中心波长的精确调节。实验中,激光器可产生1030.0~1034.5 nm波长可调谐的超短脉冲激光,光谱带宽大于13.1 nm。在整个波长调谐范围内,放大脉冲激光的信噪比均大于55 dB,时域脉宽为7.1~7.5 ps。此外,得益于全保偏光纤架构,该1μm超短脉冲光源表现出良好的长期稳定性,平均功率的相对抖动低至0.1%。该激光器产生的波长可调谐超短脉冲激光,能够精准匹配Yb∶YAG、Yb∶CaF2、Yb∶Lu2O3等晶体的发射峰,可为后续Yb∶YAG、Yb∶CaF2、Yb∶Lu2O3等大能量超短脉冲固体激光器提供紧凑、便捷、稳定的种子光源。  相似文献   

13.
江丽  宋锐  何九如  侯静 《中国激光》2022,(9):205-206
<正>超连续谱激光具有宽光谱和高亮度的特性,被广泛应用于光学相干断层扫描、生物光学、光谱检测等领域。目前,产生可见光至近红外波段超连续谱的常用方案是利用脉冲光纤激光器泵浦光子晶体光纤。利用该方案, 2018年,中国工程物理研究院报道了563W的高功率超连续谱激光,输出光谱范围为665~1750 nm。在该方案中,高功率皮秒脉冲光纤激光器输出尾纤(纤芯直径约为20μm)与光子晶体光纤(纤芯直径约为5μm)之间较大的模场失配以及光子晶体光纤较小的纤芯直径是制约输出超连续谱功率提升的主要原因。  相似文献   

14.
采用四氯化硅水解掺杂结合高频等离子体粉末熔 融法制备了掺Yb3+石英玻璃,以此玻璃作为光纤 纤芯,通过堆积-拉丝法拉制了掺Yb3+大模场微结构光纤。光纤的纤芯直径达到了130μm,并且研究了光 纤的吸收光谱、发射光谱、损耗特性和激光特性。以此光纤为增益介质,当泵浦波长为970nm时,实现了 波长为1033nm的连续激光输出,激光输出的最 大功率为 3.6W以及激光斜率效率为42.1%。测试结果表 明,利用水解工艺制备的掺Yb3+大模场微结构光纤有望应用于高功率光纤激光器的研 制。  相似文献   

15.
随着光纤的发明及其损耗的降低、预制棒和拉丝技术的进步、玻璃掺杂工艺的成熟,出现了以稀土掺杂玻璃光纤作为增益介质的光纤激光器.柔韧质轻的光纤赋予了光纤激光器结构紧凑、体积小和重量轻等优点;利用不同的掺杂光纤,激光波长可在较宽的光谱范围内选取(见表1).玻璃基质的Stark效应使稀土掺杂光纤具有比晶体宽得多的吸收和发射带宽,从而更适合于LD抽运,更适合于波长宽带调谐与超短光脉冲运用;尽管玻璃的热学性质比晶体差,但光纤表面积与掺杂纤芯体积之比高,仍使掺杂光纤散热性能好、光损伤阈高,并不需要特殊致冷.  相似文献   

16.
高玉欣  陈吉祥  张泽贤  战泽宇  罗智超 《红外与激光工程》2022,51(7):20220234-1-20220234-6
1.7 μm超短脉冲光纤激光器在生物成像和材料加工等领域具有重要的应用前景,受到了科学家们的极大关注。基于非线性偏振旋转锁模技术,实验搭建了全光纤结构的1.7 μm锁模脉冲掺铥光纤激光器。通过在激光器内加入光纤滤波器抑制掺铥光纤中的长波激光发射,同时采用纤芯泵浦的方式有效获得了1.7 μm波段的增益。激光器输出脉冲的光谱中心波长为1733 nm,3 dB带宽为6.3 nm。锁模脉冲的重复频率为19.56 MHz,平均功率为1.4 mW。同时,数值模拟了脉冲在激光器的腔内演化。文中提出的1.7 μm全光纤锁模激光器有利于进一步提高1.7 μm激光源的稳定性和集成度,在生物成像等领域具有重要的应用价值。  相似文献   

17.
为了研究锁模光纤激光器以增益平坦型掺铒光纤放大器作为增益介质对输出特性的影响,采用增益平坦型掺铒光纤放大器结合光纤偏振控制器、偏振相关光隔离器组成锁模光纤激光器,基于非线性偏振旋转锁模技术,实现稳定、自起振锁模运转,得到了中心波长1560nm、重复频率6.495MHz、单脉冲能量0.7nJ、脉宽1.5ps的超短光脉冲。同时实验观察到峰值波长为1557nm和1570nm的双峰值波长锁模脉冲的产生。结果表明,采用增益平坦型掺铒光纤放大器替代普通掺铒光纤组成锁模光纤激光器,可获得较高单脉冲能量的超短光脉冲,锁模脉冲的输出光谱可能出现双峰结构,从而可为超短脉冲光纤激光器设计及实用化提供参考。  相似文献   

18.
利用半导体激光器(LD)抽运大模场增益光纤实现了输出功率大于4kW的主振荡功率放大结构全光纤激光器。实验研究了增益光纤纤芯直径和抽运波长不同情况下激光器的受激拉曼散射(SRS)和横向模式不稳定(TMI)特性。为了抑制SRS,选择纤芯为30μm的大模场掺镱光纤作为增益介质;为了抑制光纤放大器中的TMI,利用增益光纤吸收系数较低波段对应的915nm LD作为抽运源,将增益光纤弯曲半径降低到10cm以提高高阶模的损耗。在种子功率为100 W、最高注入抽运功率为5.3kW时获得了4.1kW的功率输出,光束质量M2为2.2,输出激光中无SRS和TMI现象。  相似文献   

19.
报道了一种基于大模场光子晶体光纤放大的高峰值功率飞秒脉冲激光系统。该激光器系统采用光纤啁啾脉冲放大结构,种子源采用重复频率为40 MHz,脉冲宽度为500fs,输出功率为10mW的光纤激光器。利用体布拉格光栅(VBG)将脉冲展宽至500ps,经过多级放大并利用声光调制器降频为500kHz,然后采用大模场纤芯直径为40μm和85μm光子晶体光纤作为功率放大器,最后采用VBG压缩脉宽至767fs,得到平均功率为104 W的激光输出,其中心波长为1030nm,实现了峰值功率为0.271GW的近衍射极限激光功率输出。  相似文献   

20.
位于人眼可见波段(380~780 nm)的激光,在显示、生物医疗、精密加工、精密光谱、光通信等领域有着重要的应用价值。在众多可见光激光的产生方法中,可见光掺稀土光纤激光器因具有高效率、高光束质量、结构简单且免维护等优势,近年来受到国内外的广泛关注。对可见光掺稀土光纤激光器的研究进展进行了详细综述,介绍了可见光连续波光纤激光器、可见光调Q脉冲光纤激光器及可见光锁模脉冲光纤激光器的产生方式和特点。最新研究进展表明,其可覆盖蓝(~480 nm)、青(~491 nm)、绿(~520 nm)、黄(~573 nm)、橙(~605 nm)、红(~635 nm)及深红(~717 nm)等丰富的可见光波长,全光纤可见光输出功率已迈向10 W,而且可见光锁模超短脉冲宽度已窄至<200 fs。结合应用需求,简要展望了可见光波段光纤激光器的发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号