首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flame retardancy of low‐density polyethylene (LDPE) treated with complex flame retardant composed of ultrafine zinc borate (UZB) and intumescent flame retardant (IFR) have been investigated by limited oxygen index (LOI), UL‐94 test, thermogravimetric analysis (TGA), cone calorimeter test, scanning electron micrograph (SEM), energy‐dispersive spectrometer (EDS), and X‐ray diffraction (XRD). The results of LOI and UL‐94 test indicate the desired flame retardancy of LDPE is obtained when the mass ratio of UZB to IFR is 4.2 : 25.8 and the complex flame retardant mass content is 30% (based on LDPE). The results of cone calorimeter show that heat release rate (HRR) peak, total heat release (THR), and mass loss of LDPE/IFR/UZB decrease substantially when compared with those of LDPE/IFR. TGA results show that the residue of LDPE/IFR/UZB increases obviously than that of LDPE/IFR when the temperature is above 600°C. SEM indicates the quality of char forming of LDPE/IFR/UZB is superior to that of LDPE/IFR. The results of EDS and XRD indicate that boron orthophosphate (BPO4) and zinc‐contained compounds are formed in the residual char and these substances may play an important role in stabilizing the intumescent char structure and decrease the degradation speed substantially when subjected to high temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3667–3674, 2007  相似文献   

2.
A novel intumescent flame retardant (IFR), containing ammonium polyphosphate (APP) and poly(tetramethylene terephthalamide) (PA4T), was prepared to flame‐retard acrylonitrile‐butadiene‐styrene (ABS). The flame retardation of the IFR/ABS composite was characterized by limiting oxygen index (LOI) and UL‐94 test. Thermogravimetric analysis (TGA) and TGA coupled with Fourier transform infrared spectroscopy (TG‐FTIR) were carried out to study the thermal degradation behavior of the composite and look for the mechanism of the flame‐retarded action. The morphology of the char obtained after combustion of the composite was studied by scanning electron microscopy (SEM). It has been found the intumescent flame retardant showed good flame retardancy, with the LOI value of the PA4T/APP/ABS (7.5/22.5/70) system increasing from 18.5 to 30% and passing UL‐94 V‐1 rating. Meanwhile, the TGA and TG‐FTIR work indicated that PA4T could be effective as a carbonization agent and there was some reaction between PA4T and APP, leading to some crosslinked and high temperature stable material formed, which probably effectively promoted the flame retardancy of ABS. Moreover, it was revealed that uniform and compact intumescent char layer was formed after combustion of the intumescent flame‐retarded ABS composite. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
A novel halogen‐free intumescent flame retardant, spirophosphoryldicyandiamide (SPDC), was synthesized and combined with ammonium polyphosphate (APP) to produce a compound intumescent flame retardant (IFR). This material was used in polypropylene (PP) to obtain IFR‐PP systems whose flammability and thermal behavior were studied by the limiting oxygen index (LOI) test, UL‐94, thermogravimetric analysis, and cone calorimetry. In addition, the mechanical properties of the systems were investigated. The results indicated that the compound intumescent flame retardant showed both excellent flame retardancy and antidripping ability for PP when the two main components of the IFR coexisted in appropriate proportions. The optimum flame retardant formulation was SPDC:APP = 3:1, which gave an LOI value of 38.5 and a UL‐94 V‐0 rating. Moreover, the heat release rate, production of CO, smoke production rate, and mass loss rate of the IFR‐PP with the optimum formulation decreased significantly relative to those of pure PP, according to the cone calorimeter analysis. The char residues from the cone calorimetry experiments were observed by scanning electron microscopy, which showed that a homogeneous and compact intumescent char layer was formed. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

4.
Tris(2‐hydroxyethyl) isocyanurate (THEIC) was used as charring agent and combined with ammonium polyphosphate (APP) to form an intumescent flame retardant (IFR) for polypropylene (PP). The flame retardancy and combustion performance of PP/IFR composite was tested by limiting oxygen index (LOI), UL‐94 vertical burning test and cone calorimeter. The results showed that PP/IFR composite had highest LOI of 34.8 and obtained V‐0 rating when 30 wt % IFR was loaded and mass ratio APP/THEIC was 2 : 1. The peak heat release (PHRR) and total heat release (THR) values of PP composite containing FRs were remarkably reduced compared with that of pure PP. However, water resistant test demonstrated the PP/IFR composite had poor flame retardant durability, both the LOI value and UL‐94 V‐rating decreased when PP/IFR composite was soaked in water at 70°C after 36 h. The degradation process and the char morphology of IFR and PP/IFR composite were investigated by TGA and SEM images. The possible reaction path between APP and THEIC in the swollen process was proposed. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41214.  相似文献   

5.
A novel charring agent (CNCA‐DA) containing triazine and benzene ring, using cyanuric chloride, aniline, and ethylenediamine as raw materials, was synthesized and characterized. The effects of CNCA‐DA on flame retardancy, thermal degradation, and flammability properties of polypropylene (PP) were investigated by limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis (TGA), and cone calorimeter test (CCT). The TGA results showed that CNCA‐DA had a good char forming ability, and a high initial temperature of thermal degradation; the char residue of CNCA‐DA reached 18.5% at 800°C; Ammonium polyphosphate (APP) could improve the char residue of APP/CNCA‐DA system, the char residue reached 31.6% at 800°C. The results from LOI and UL‐94 showed that the intumescent flame retardant (IFR) containing CNCA‐DA and APP was very effective in flame retardancy of PP. When the mass ratio of APP and CNCA‐DA was 2 : 1, and the IFR loading was 30%, the IFR showed the best effect; the LOI value reached 35.6%. It was also found that when the IFR loading was only 20%, the flame retardancy of PP/IFR can still pass V‐0 rating in UL‐94 tests, and its LOI value reached 27.1%. The CCT results demonstrated that IFR could clearly change the decomposition behavior of PP and form a char layer on the surface of the composites, consequently resulting in efficient reduction of the flammability parameters, such as heat release rate (HRR), total heat release (THR), smoke production rate (SPR), total smoke production (TSP), and mass loss (ML). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
The thermal degradation behavior of low‐density polyethylene (LDPE), LDPE treated with an intumescent flame retardant (LDPE/IFR), and LDPE treated with an intumescent flame retardant and ultrafine zinc borate (LDPE/IFR/UZB) was studied by (thermal gravimetric)‐(differential thermal) analysis (TG‐DTA) and cone calorimetry. The results of TG‐DTA showed that the initial degradation temperature increased, thermal degradation rate decreased, and the residual char amount increased substantially during the Pyrolysis process when ultrafine zinc borate was introduced into the LDPE/IFR system. The mass‐loss rate (MLR) curves and mass curves obtained by cone calorimetry showed that UZB could decrease the MLR and significantly enhance the residual char amount of LDPE/IFR during the combustion process. The results of Fourier transform infrared spectroscopy implied that a graphite‐like char and aromatic structures containing P‐O‐P, P‐O‐C, and B‐O‐B bonds were formed when LDPE/IFR/UZB was heated at high temperature. Scanning electronic micrographs of residual chars showed that ultrafine zinc borate improved char quality. X‐ray diffraction Studies implied that boron orthophosphate (BPO4) formed in the residual char may play an important role in improving the structural properties of the char and is responsible for its good quality. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

7.
The synergistic effects of 4A zeolite (4A) on the thermal degradation, flame retardancy, and char formation of an efficient halogen‐free flame‐retardant ethylene‐vinyl acetate copolymer composite (EVA/IFR) were investigated by limited oxygen index (LOI), vertical burning test (UL‐94), cone calorimeter test (CCT), digital photography, scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), laser Raman spectroscopy (LRS) and thermogravimetric analytical (TGA) methods. It was found that a small amount of 4A clearly improved the LOI value of the EVA/IFR composite and reinforced the fire retardant performance with a great reduction in the combustion parameters of the EVA/IFR system from the CCT test. The entire composites passed the UL‐94 V‐0 rating test. The TGA and integral procedure decomposition temperature (IDPT) results showed that 4A enhanced the thermal stability of the EVA/IFR system and increased the char residue content effectively. The morphological structures observed by digital and SEM imaging revealed that 4A could promote EVA/IFR to form a more continuous and compact intumescent char layer. The LRS and EDS results demonstrated that by introduction of 4A into the EVA/IFR system, a more graphite structure was formed with increase phosphorus content in the char residue. POLYM. ENG. SCI., 56:380–387, 2016. © 2016 Society of Plastics Engineers  相似文献   

8.
Amino trimethylene phosphonic acid melamine salt (MATMP) was synthesized and used as acid source and blowing agent in intumescent flame‐retarded polypropylene (PP); its compositions were characterized by Fourier transform infrared spectroscopy and X‐ray powder diffraction. An intumescent flame retardant (IFR) system composed of MATMP, pentaerythritol (PER), and PP was tested by limiting oxygen index (LOI), UL‐94, cone calorimeter tests, and thermogravimetric analysis and compared with an ammonium polyphosphate (APP)/PER system. The results showed that MATMP had better water resistance than APP, the LOI value of PP/MATMP/PER composite can reach 30.3%, and a UL‐94 V‐0 rating can be reached at 25 wt % IFR loading. The amount of residual char of IFR MATMP/PER was 20.3 and 9.5 wt % at 400 and 600 °C, respectively. A thermooxidative degradation route and a possible flame‐retardant mechanism of IFR were proposed according to the analysis of evolved gases and residual chars. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46274.  相似文献   

9.
Synergistic flame‐retardant effect of halloysite nanotubes (HNTs) on an intumescent flame retardant (IFR) in low‐density polyethylene (LDPE) was investigated by limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis (TGA), cone calorimeter (CC) test, and scanning electronic microscopy (SEM). The results of LOI and UL‐94 tests indicated that the addition of HNTs could dramatically increase the LOI value of LDPE/IFR in the case that the mass ratio of HNTs to IFR was 2/28 at 30 wt % of total flame retardant. Moreover, in this case the prepared samples could pass the V‐0 rating in UL‐94 tests. CC tests results showed that, for LDPE/IFR, both the heat release rate and the total heat release significantly decreased because of the incorporation of 2 wt % of HNTs. SEM observations directly approved that HNTs could promote the formation of more continuous and compact intumescent char layer in LDPE/IFR. TGA results demonstrated that the residue of LDPE/IFR containing 2 wt % of HNTs was obviously more than that of LDPE/IFR at the same total flame retardant of 30 wt % at 700°C under an air atmosphere, and its maximum decomposing rate was also lower than that of LDPE/IFR, suggesting that HNTs facilitated the charring of LDPE/IFR and its thermal stability at high temperature in this case. Both TGA and SEM results interpreted the mechanism on the synergistic effect of HNTs on IFR in LDPE, which is that the migration of HNTs to the surface during the combustion process led to the formation of a more compact barrier, resulting in the promotion of flame retardancy of LDPE/IFR. In addition, the mechanical properties of LDPE/IFR/HNTs systems were studied, the results showed that the addition of 0.5–2 wt % of HNTs could increase the tensile strength and the elongation at break of LDPE/IFR simultaneously. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40065.  相似文献   

10.
A novel flame retardant, tetra(5,5‐dimethyl‐1,3‐ dioxaphosphorinanyl‐2‐oxy) neopentane (DOPNP), was synthesized successfully, and its structure was characterized by FT‐IR, 1H NMR, and 31P NMR. The thermogravimetric analysis (TGA) results demonstrate that DOPNP showed a good char‐forming ability. Its initial decomposition temperature was 236.4°C based on 1% mass loss, and its char residue was 41.2 wt % at 600°C, and 22.9 wt % at 800°C, respectively. The flame retardancy and thermal degradation behavior of novel intumescent flame‐retardant polypropylene (IFR‐PP) composites containing DOPNP were investigated using limiting oxygen index (LOI), UL‐94 test, TGA, cone calorimeter (CONE) test, and scanning electron microscopy (SEM). The results demonstrate that DOPNP effectively raised LOI value of IFR‐PP. When the loading of IFR was 30 wt %, LOI of IFR‐PP reached 31.3%, and it passed UL‐94 V‐0. TGA results show that DOPNP made the thermal decomposition of IFR‐PP take place in advance; reduced the thermal decomposition rate and raised the residual char amount. CONE results show that DOPNP could effectively decrease the heat release rate peak of IFR‐PP. A continuous and compact char layer observed from the SEM further proved the flame retardance. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

11.
A hyperbranched charring agent (CT) was synthesized by triglycidyl isocyanurate and diethylenetriamine in water, and a new intumescent flame retardant (IFR) system was formed by ammonium polyphosphate (APP) and CT. The different formula and synergistic system between IFR and aluminum hypophosphite (AHP) have been studied through limit oxygen index (LOI), UL‐94, cone calorimetry test and TGA. It was found that the LOI for poly(lactic acid) (PLA) with 30 APP/CT (4:1) and 20 wt % IFR/AHP (3:1) were 41.2% and 43.5%, respectively, and the both could achieve UL‐94V‐0 rating with no melt dripping. The heat release rate (HRR), maximum HRR value and average mass loss rate of PLA could be dramatically decreased by combination of IFR and AHP while the thermal stability was greatly enhanced. The study of morphology and structure of char illustrated that more intumescent and compact char layer with good intensity was formed during the degradation of IFR/AHP, which resulting to better flame retardancy and anti‐dripping than IFR or AHP alone. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46359.  相似文献   

12.
吴笑  许博  辛菲  王向东  马雯  倪沛 《中国塑料》2018,32(5):73-78
将有机-金属杂化三嗪化合物(SCTCFA-ZnO)与聚磷酸铵(APP)复配制备了膨胀型阻燃剂(IFR),通过极限氧指数测试、垂直燃烧测试、锥形量热分析、热失重分析和扫描电子显微镜分析等表征方法研究了SCTCFA-ZnO/APP的协同作用对PP复合材料阻燃性能的影响。结果表明,APP与SCTCFA-ZnO复配可以有提高PP材料的阻燃性能,当IFR的添加量为25 %(质量分数,下同),且APP/SCTCFA-ZnO的质量比为2/1时,复合材料的极限氧指数最高,达到31.1 %,达到UL 94 V-0级;IFR可提高复合体系的温热稳定性,阻燃复合材料燃烧后会形成一层致密、连续的炭层,从而起到良好的阻燃效果。  相似文献   

13.
Piperazine spirocyclic phosphoramidate (PSP), a novel halogen‐free intumescent flame retardant, was synthesized and used to improve the flame retardancy and dripping resistance of polypropylene (PP) combined with ammonium polyphosphate (APP) and a triazine polymer charring‐foaming agent (CFA). The optimum flame‐retardant formulation was PSP:APP:CFA = 3:6:2 (weight ratio). The flammability and thermal behavior of the (intumescent flame‐retardant)‐PP (IFR‐PP) were investigated via limiting oxygen index (LOI), vertical burning tests (UL‐94), thermogravimetric analysis, and cone calorimetry (CONE). The results indicated that the IFR‐PP had both excellent flame retardancy and anti‐dripping ability. The optimum flame‐retardant formulation gave an LOI value of 39.8 and a UL‐94 V‐0 rating to PP. Moreover, both the heat release rate and the total heat release of the IFR‐PP with the optimum formulation decreased significantly relative to those of pure PP, according to the cone calorimeter analyses. The residues of IFR‐PP obtained after CONE tests were observed by scanning electron microscopy, and it was found that the char yield was directly related to the flame retardancy and anti‐dripping behavior of the treated PP. J. VINYL ADDIT. TECHNOL., 20:10–15, 2014. © 2014 Society of Plastics Engineers  相似文献   

14.
Pentaerythritol phosphate melamine salt (PPMS) as a single‐molecule intumescent fire retardant was synthesized and characterized. The influence of the PPMS content on the combustion and thermal decomposition processes of intumescent‐flame‐retardant (IFR) ethylene–vinyl acetate copolymer (EVA) composites was studied by limiting oxygen index (LOI) measurement, UL 94 rating testing, cone calorimetry, thermogravimetric analysis, and scanning electron microscopy. The LOI and UL 94 rating results illustrate that PPMS used in EVA improved the flame retardancy of the EVA composites. The cone calorimetry test results show that the addition of PPMS significantly decreased the heat‐release rate, total heat release, and smoke‐production rate and enhanced the residual char fire performance of the EVA composites. The IFR–EVA3 composite showed the lowest heat‐release and smoke‐production rates and the highest char residue; this means that the IFR–EVA3 composite had the best flame retardancy. The thermogravimetry results show that the IFR–EVA composites had more residual char than pure EVA; the char residue yield increased with increasing PPMS content. The analysis results for the char residue structures also illustrated that the addition of PPMS into the EVA resin helped to enhance the fire properties of the char layer and improve the flame retardancy of the EVA composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42148.  相似文献   

15.
氧化锌催化膨胀型阻燃剂对PP阻燃及力学性能的影响   总被引:13,自引:0,他引:13  
研究了氧化锌催化膨胀型阻燃剂(APP/PER)对PP阻燃和力学性能的影响。研究表明,当APP/PER质量比为20/10,ZnO的质量分数为1.3%时,阻燃PP的LOI值达到最大;同时阻燃PP的拉伸强度和冲击强度比不含ZnO的PP有所提高。TG结果表明,ZnO的加入使阻燃PP燃烧时降解过程加快并生成更多的剩炭,形成稳定的保护层,从而提高了PP的阻燃效果。SEN的形貌观察表明,加入ZnO的试样燃烧炭膜孔径较小、孔膜较厚。  相似文献   

16.
以二乙醇胺为侧链,三聚氯氰和哌嗪为主链,采用一锅法制备了一种多羟基三嗪成炭剂(CDP),将其与聚磷酸铵(APP)复配成膨胀阻燃剂(IFR)用于阻燃聚丙烯(PP)。采用垂直燃烧、极限氧指数、热失重分析等手段研究了阻燃PP的阻燃性能和热稳定性,并用扫描电子显微镜(SEM)对炭层形貌进行了研究。结果表明,APP和CDP具有良好的协同阻燃效果,当APP与CDP质量比为2∶1时,协同阻燃效果最优,仅添加20% IFR,即可使PP达到UL94 V–0级别,LOI为29.5%。热失重分析表明该复合材料在800℃具有最高的残炭量,SEM也显示形成了连续致密的炭层。  相似文献   

17.
ABSTRACT

The synergistic effects of aluminum hypophosphite (AHP) on the flame retardancy, thermal degradation behaviors of a novel intumescent flame retardant thermoplastic vulcanizate (TPV/IFR) composite were investigated. The results showed that the combination of AHP with IFR showed evident synergistic effects on the increase in the LOI value and reduction of the combustion parameters for the TPV/IFR/AHP composites at the optimum weight ratio of IFR/AHP (6/1) as evidenced by LOI, UL-94 and CCT. The TGA data revealed that AHP could change the degradation behavior of TPV/IFR composites and enhance the thermal stability of the TPV/IFR composites at high temperature. The results of FTIR, EDXS, LRS and SEM demonstrated that TPV/IFR/AHP composites could form more continuous, dense and stable char layer on the materials surface, and consequently improving the flame retardancy. Based on these results, the possible condensed flame retardant mechanism of TPV/IFR/AHP composites was concluded in detail.  相似文献   

18.
《Polymer Composites》2017,38(12):2771-2778
The BiFeO3 was used to intumescent flame retardant (IFR) polypropylene (PP) composites as a synergist. The limiting oxygen index (LOI) and UL‐94 tests indicated that there is an optimum synergistic concentration of BiFeO3 in the PP/IFR composites. Thermogravimetric analysis (TG) results of flame retardant PP showed that the moderate of BiFeO3 can reduce the decomposition rate of sample at high temperatures. TG of APP/PER/BiFeO3 showed that BiFeO3 main affects the third mass loss stage of APP/PER. So the morphology and composition of the char residue of APP/PER/BiFeO3 composites were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), and laser Raman spectroscopy (LRS). An appropriate amount of BiFeO3 can react with APP/PER forming Bi O P and Fe O P bond, and so more P elements was involved in a crosslinking reaction to form more stable char residue, which can effectively increase the flame retardant properties of PP. POLYM. COMPOS., 38:2771–2778, 2017. © 2015 Society of Plastics Engineers  相似文献   

19.
An attractive intumescent flame retardant epoxy system was prepared from epoxy resin (diglycidyl ether of bisphenol A), low molecular weight polyamide (cure agent, LWPA), and ammonium polyphosphate (APP). The cured epoxy resin was served as carbonization agent as well as blowing agent itself in the intumescent flame retardant formulation. Flammability and thermal stability of the cured epoxy resins with different contents of APP and LWPA were investigated by limited oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). The results of LOI and UL‐94 indicate that APP can improve the flame retardancy of LWPA‐cured epoxy resins. Only 5 wt % of APP can increase the LOI value of epoxy resins from 19.6 to 27.1, and improve the UL‐94 ratings, reaching V‐0 rating from no rating when the mass ratio of epoxy resin to LWPA is 100/40. It is much interesting that LOI values of flame retardant cured epoxy resins (FR‐CEP) increase with decreasing LWPA. The results of TGA, FTIR, and X‐ray photoelectron spectroscopy (XPS) indicate that the process of thermal degradation of FR‐CEP consists of two main stages: the first stage is that a phosphorus rich char is formed on the surface of the material under 500°C, and then a compact char yields over 500°C; the second stage is that the char residue layer can give more effective protection for the materials than the char formed at the first stage do. The flame retardant mechanism also has been discussed according to the results of TGA, FTIR, and XPS for FR‐CEP. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
采用密胺包覆聚磷酸铵(APP)、季戊四醇(PER)和三聚氰胺(MEL)作为膨胀型阻燃剂(IFR)对不饱和树脂(UP)进行改性,研究了APP、PER和MEL不同复配比例及用量对不饱和树脂基复合材料阻燃性能和力学性能的影响。基于IFR最佳用量,以二乙基次磷酸铝(ADP)为协效剂,研究了ADP用量对IFR/UP阻燃复合材料阻燃性能、力学性能及热稳定性的影响。结果表明,当APP∶PER∶MEL复配比例为4∶1∶1,IFR添加量为15 %(质量分数,下同)时,复合材料综合性能最佳,其极限氧指数为27.4 %,UL 94垂直燃烧达到V?1等级,弯曲强度和冲击韧性分别为100.3 MPa和6.3 kJ/m2;ADP的引入能够进一步提高IFR/UP复合材料阻燃性能,且随着ADP质量分数的增加而增强;当ADP质量分数为2 %时,IFR?ADP/UP复合材料极限氧指数为28.5 %并达到V?0阻燃等级,弯曲强度和冲击韧性分别为110 MPa和7.8 kJ/m2,与IFR/UP复合材料相比,分别提高了9.7 %和23.8 %;ADP能够促进IFR/UP复合材料表面成炭,缓解基体的热降解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号