首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
我国油页岩综合利用相关研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
油页岩是一种重要的能源资源,其储量巨大,是世界石油资源补充能源。本文综述了近几年油页岩相关基础研究与技术开发,分析了我国单独炼油、单独燃烧发电及灰渣综合利用的研究进展,将油页岩炼油、半焦燃烧发电、灰渣综合利用集成一体,不仅可提高油页岩综合利用效率,而且还可对环境起到保护作用。本文为油页岩综合利用相关科学研究提供参考。  相似文献   

2.
本文介绍了油页岩及其灰渣的成分,重点对油页岩灰渣的综合利用进行了综述,包括油页岩渣在制备建筑材料、精细化工产品、农业肥料和废气和废水处理等领域的研究现状和前景。  相似文献   

3.
油页岩的开发与利用   总被引:21,自引:1,他引:21  
简要介绍了抚顺油页岩工业的发展过程。重点介绍抚顺式炉的结构及干馏工艺;对油页岩的深加工方向进行了探索讨论,提出油页岩灰渣的综合利用方向。  相似文献   

4.
中国油页岩资源较丰富(预测资源量约为7199.37亿t),并有超过50a的开发利用经验,全球油页岩开发已有近200a历史,开采和综合利用技术日趋成熟和完善。因此,中国应加大油页岩的勘探开发力度和综合利用研究。目前中国已经在辽宁、吉林、广东等省开展了油页岩的综合利用。  相似文献   

5.
<正>6月9日,吉林省汪清县龙腾能源开发有限公司与东北电力大学合作开发的油页岩干馏炼油半焦燃烧供热发电一体化综合利用技术通过中国高科技产业化研究会组织的科技成果鉴定。该技术将油页岩干馏炼油收率由目前的65%一举提升至90%的世界先进水平,同时实现了干半焦、干馏气、灰渣的综合利用,提高了油页岩开发的经济效益,为我国页岩油行业开辟出一条新技术路线。据龙腾能源董事长黄兴伟介绍,应用该技术,油页岩破碎筛分后的10~100毫米块状油页岩用于干馏炼油,收油率超过90%,达到世界先进水平;0~  相似文献   

6.
我国油页岩资源开发利用及建议   总被引:1,自引:0,他引:1  
油页岩是一种重要的能源矿产,其资源量巨大,是石油和天然气的重要补充和替代资源。我国油页岩资源较为丰富、开发利用历史悠久,目前主要用于炼油、燃烧发电等,若能合理开发综合利用油页岩资源,必能取得良好的资源、环境、经济和社会效益,对实现资源和经济的可持续发展有着重要作用和意义。  相似文献   

7.
在固体燃料用量增加的情况下,对固体燃料,首先是对高灰分固体燃料综合利用的问题具有越来越重要的意义。例如,在热电站每年要烧掉2500~3000万吨库克油页岩,并约有1200万吨灰渣。用这些灰渣作为水泥原料组分和矿化剂生产特种和高强波特兰水泥是灰渣利  相似文献   

8.
世界各国油页岩的组成及综合利用   总被引:10,自引:0,他引:10  
李建华  曹祖宾 《辽宁化工》2007,36(2):110-112,116
描述了美国、约旦、巴基斯坦、摩洛哥、中国油页岩的组成情况,了解到这5个国家油页岩的主要理化性质。介绍了世界各国油页岩的综合利用情况。研究表明,油页岩作为重要的补充资源,应对其进行合理开发和利用。  相似文献   

9.
油页岩开发利用技术及系统集成的研究进展   总被引:1,自引:1,他引:0       下载免费PDF全文
油页岩作为一种非常规能源,储量巨大,是最具潜力的石油替代资源之一。将油页岩干馏炼油、半焦燃烧发电、页岩油气提质、灰渣生产建材和化工品等工艺技术进行集成,可提升能效、改善经济效益,符合我国能源发展战略需求,具有广阔应用前景。本文专题论述在油页岩开发利用过程中主要关键单元技术,系统集成技术的现状及研究进展。为深入研究和高效环保开发利用油页岩资源提供理论和技术基础。  相似文献   

10.
利用聚二烯二甲基丙基氯化铵(PDMDAAC)对油页岩灰渣进行了改性,并将其用于模拟含Cr(Ⅵ)废水的吸附。对改性前后的油页岩灰渣进行了表征。结果表明,改性后油页岩灰渣的BET比表面积增大(为50.75 m2/g),可为Cr(Ⅵ)提供大量的吸附位点。当Cr(Ⅵ)的质量浓度为20 mg/L时,改性油页岩灰渣在常温和振摇转速180 r/min条件下,综合优化吸附条件为:吸附时间30 min,体系pH为5.0,吸附剂投加量20 g/L,在此条件下Cr(Ⅵ)去除率达到95.77%。改性油页岩灰渣对水中Cr(Ⅵ)离子的吸附作用符合准2级动力学模型;相比于Langmuir方程,其吸附等温模型更符合Freundlich吸附模型,且吸附过程可能受2个或多个速控步骤控制。  相似文献   

11.
Vismiones and ferruginins, representatives of a new class of lypophilic anthranoids from the genusVismia were found to inhibit feeding in larvae of species ofSpodoptera, Heliothis, and inLocusta migratoria.  相似文献   

12.
It is well established that a wide range of drugs of abuse acutely boost the signaling of the sympathetic nervous system and the hypothalamic–pituitary–adrenal (HPA) axis, where norepinephrine and epinephrine are major output molecules. This stimulatory effect is accompanied by such symptoms as elevated heart rate and blood pressure, more rapid breathing, increased body temperature and sweating, and pupillary dilation, as well as the intoxicating or euphoric subjective properties of the drug. While many drugs of abuse are thought to achieve their intoxicating effects by modulating the monoaminergic neurotransmitter systems (i.e., serotonin, norepinephrine, dopamine) by binding to these receptors or otherwise affecting their synaptic signaling, this paper puts forth the hypothesis that many of these drugs are actually acutely converted to catecholamines (dopamine, norepinephrine, epinephrine) in vivo, in addition to transformation to their known metabolites. In this manner, a range of stimulants, opioids, and psychedelics (as well as alcohol) may partially achieve their intoxicating properties, as well as side effects, due to this putative transformation to catecholamines. If this hypothesis is correct, it would alter our understanding of the basic biosynthetic pathways for generating these important signaling molecules, while also modifying our view of the neural substrates underlying substance abuse and dependence, including psychological stress-induced relapse. Importantly, there is a direct way to test the overarching hypothesis: administer (either centrally or peripherally) stable isotope versions of these drugs to model organisms such as rodents (or even to humans) and then use liquid chromatography-mass spectrometry to determine if the labeled drug is converted to labeled catecholamines in brain, blood plasma, or urine samples.  相似文献   

13.
14.
15.
16.
17.
Halyomorpha halys (Stål) (Pentatomidae), called the brown marmorated stink bug (BMSB), is a newly invasive species in the eastern USA that is rapidly spreading from the original point of establishment in Allentown, PA. In its native range, the BMSB is reportedly attracted to methyl (E,E,Z)-2,4,6-decatrienoate, the male-produced pheromone of another pentatomid common in eastern Asia, Plautia stali Scott. In North America, Thyanta spp. are the only pentatomids known to produce methyl 2,4,6-decatrienoate [the (E,Z,Z)-isomer] as part of their pheromones. Methyl 2,4,6-decatrienoates were field-tested in Maryland to monitor the spread of the BMSB and to explore the possibility that Thyanta spp. are an alternate host for parasitic tachinid flies that use stink bug pheromones as host-finding kairomones. Here we report the first captures of adult and nymph BMSBs in traps baited with methyl (E,E,Z)-2,4,6-decatrienoate in central Maryland and present data verifying that the tachinid, Euclytia flava (Townsend), exploits methyl (E,Z,Z)-2,4,6-decatrienoate as a kairomone. We also report the unexpected finding that various isomers of methyl 2,4,6-decatrienoate attract Acrosternum hilare (Say), although this bug apparently does not produce methyl decatrienoates. Other stink bugs and tachinids native to North America were also attracted to methyl 2,4,6-decatrienoates. These data indicate there are Heteroptera in North America in addition to Thyanta spp. that probably use methyl 2,4,6-decatrienoates as pheromones. The evidence that some pentatomids exploit the pheromones of other true bugs as kairomones to find food or to congregate as a passive defense against tachinid parasitism is discussed.  相似文献   

18.
收集了2007年7月~2008年6月世界塑料工业的相关资料,介绍了2007~2008年国外塑料工业的发展情况,提供了世界塑料产量、消费量及全球各类树脂的需求量及产能情况.按通用热塑性树脂(聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、ABS树脂)、工程塑料(尼龙、聚碳酸酯、聚甲醛、热塑性聚酯、聚苯醚)、特种工程塑料(聚苯·硫醚、液晶聚合物、聚醚醚酮)、通用热固性树脂(酚醛、聚氨酯、不饱和聚酯树脂、环氧树脂)不同品种的顺序,对树脂的产量、消费量、供需状况及合成工艺、产品应用开发、树脂品种的延伸及应用的进一步扩展等技术作了详细介绍.  相似文献   

19.
收集了2005年7月~2006年6月国外塑料工业的相关资料,介绍了2005—2006年国外塑料工业的发展情况。提供了世界塑料产量、消费量及全球各类树脂生产量以及各国塑料制品的进出口情况。作为对比,介绍了中国塑料的生产情况。按通用热塑性树脂(聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、ABS树脂)、工程塑料(聚酰胺、聚碳酸酯、聚甲醛、热塑性聚酯、聚苯醚)、通用热固性树脂(酚醛、聚氨酯、不饱和树脂、环氧树脂)、特种工程塑料(聚苯硫醚、液晶聚合物、聚醚醚酮)的品种顺序,对树脂的产量、消费量、供需状况及合成工艺、产品开发、树脂品种的延伸及应用的扩展作了详细的介绍。  相似文献   

20.
Inorganic/organic hybrid materials have considerable promise and are beginning to become a major area of research for many coating usages, including abrasion and corrosion resistance. Our primary approach is to prepare the inorganic phase in situ within the film formation process of the organic phase. The inorganic phase is introduced via sol-gel chemistry into a thermosetting organic phase. By this method, the size, periodicity, spatial positioning, and density of the inorganic phase can be controlled. An important aspect of the inorganic/organic hybrid materials is the coupling agent. The initial task of the coupling agent is to provide uniform mixing of the oligomeric organic phase with the sol-gel precursors, which are otherwise immiscible. UV-curable inorganic/organic hybrid systems have the advantages of a rapid cure and the ability to be used on heat sensitive substrates such as molded plastics. Also, it is possible to have better control of the growth of the inorganic phase using UV curing. It is our ultimate goal to completely separate the curing of inorganic and organic phases to gain complete control over the morphology, and hence optimization of “all” the coating properties. Thus far, it has been found that concomitant UV curing of the inorganic and organic phases using titanium sol-gel precursors afforded nanocomposite coatings which completely block the substrate from UV light while maintaining a transparent to visible light. Also, it has been found that the morphology of the inorganic phase is highly dependent on the concentration and reactivity of the coupling agent. Presented at the 82nd Annual Meeting of the Federation of Societies for Coatings Technology, October 27–29, 2004, in Chicago, IL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号