首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于3种煤层顶底板砂岩经历400~1 000 ℃高温前、后进行了X射线衍射和物理参数测试,分析高温作用对3种砂岩试样矿物成分及物理参数的影响。试验结果表明:高温后3种砂岩矿物晶体发生了相变,矿物成分发生较大变化;经历400 ℃高温对3种砂岩试样物理参数的影响甚微,超过400 ℃高温后试样视密度、波速与温度呈负相关,体膨胀率和烧失率与温度呈正相关。高温后3种砂岩试样视密度与纵波波速呈正相关,烧失率、体膨胀率与纵波波速呈负相关,高温后3种砂岩的物理参数之间具有一定关联性,岩石物理参数是对岩性特征宏观表述。研究结果可为局部区域煤层自燃对隧道围岩稳定性、安全性评价以及支护设计提供一定的参考。  相似文献   

2.
 运用偏光显微技术,比较不同温度处理后砂岩、花岗岩和大理岩微观结构的不同变化特征。分析对比常温~800 ℃高温处理后三类岩石纵波波速、孔隙率、弹性模量、峰值应力及应变的变化规律,并讨论其与微观结构变化的内在联系。结合岩石热损伤后初始损伤程度增大、微裂纹刚度弱化及张开度增大等特征,采用细观损伤力学模型研究热损伤岩石应力–应变曲线显著的非线性特征。研究结果表明:(1) 热处理砂岩细观结构的变化主要表现为胶结物变化及矿物相变,矿物内无明显热裂纹发育;热处理花岗岩内热裂纹发育明显,800 ℃处理后最大裂纹宽度可达100 ?m,较400 ℃时增加约1个数量级;大理岩热裂纹以晶界裂纹为主,600 ℃处理后最大裂纹宽度达20 ?m,约为400 ℃时的2倍。(2) 花岗岩和大理岩的弹性模量随热处理温度的增大持续降低,但砂岩的弹性模量在500 ℃热处理温度阈值之后才显著下降。(3) 三类热损伤岩石的宏观物理力学性质与其形成条件、矿物组分、微裂纹发育密切相关。(4) 基于均匀化理论的细观损伤力学模型的计算值与试验值吻合良好,热损伤岩石应力–应变曲线初始压密阶段显著延长的力学行为与微裂纹密度和刚度直接相关。  相似文献   

3.
为研究油页岩在原位热解状态下的渗透特性演化规律,以抚顺西露天矿油页岩为研究对象,利用高温三轴渗透实验系统进行渗透实验,并借助压汞方法对孔隙微观结构特征进行表征,在此基础上对渗透特性演化机制进行分析讨论。研究结果表明:(1)油页岩孔隙率和渗透性演化具有很好的相关性,随着温度的升高,油页岩由原始致密状态演变为孔隙发育的多孔介质,孔隙率和渗透率增大;(2)孔隙压流体对孔隙结构变化产生多重物理作用影响,尤其在有机质热解产出油气阶段,经过高温渗透实验后油页岩的孔隙特征参数值较马弗炉加热有显著提升,300℃,400℃,500℃,600℃对应孔隙率分别增大0.6%,8.62%,1.82%和7.83%,600℃时大孔(孔径1 000 nm)和中孔(100 nm≤孔径1 000 nm)体积分别增大约1.3和2.4倍。(3) 300℃之前,油页岩渗透性主要受矿物颗粒不均匀热膨胀产生热应力和水分蒸发析出的影响;300℃~400℃时,油页岩内部的反应复杂,产生以不具有渗透性的孔隙为主,导致孔隙率和渗透性的变化出现不协同性;400℃~600℃为油气的主要热解生成阶段,油页岩内部热解孔隙不断生成并得到连通,构成了油气产物的流动通道,孔隙率增加25.77%,孔隙压力为1.0 MPa时,渗透率增大约9.06倍。  相似文献   

4.
为研究实时高温作用对岩石动态力学性能的影响,利用φ50 mm变截面分离式Hopkinson压杆(SHPB)试验装置及高温环境箱,对砂岩试件进行了常温(25 ℃)、100 ℃、200 ℃、400 ℃、600 ℃、800 ℃和1 000 ℃7个温度等级的冲击压缩试验,得到了不同温度砂岩试件的动态应力、应变、弹性模量和应变率等,分析了温度变化对砂岩动态力学性能和破坏形态的影响规律。试验结果表明:高温条件下砂岩试件的动态力学性能比其常温状态下发生了显著变化。随着作用温度的升高,砂岩试件的动态抗压强度表现为先增大后减小,峰值应变呈线性增加,弹性模量整体呈二次抛物线下降,平均应变率呈二次抛物线增加;试件受冲击破碎程度随作用温度的升高表现为先减少再逐渐增大的趋势,其动态破坏特征也反映了砂岩试件的强度特征。  相似文献   

5.
为了研究高温条件下混凝土力学性能与细观结构的损伤规律,对不同温度影响下的混凝土开展单轴压缩、CT扫描及XRD衍射实验,分析了混凝土高温损伤的细观机理。结果表明:随温度从20 ℃增加至1 000 ℃,混凝土的抗压强度fcu、弹性模量E呈先慢后快的衰减趋势,且加热时间越长,强度的衰减幅度越高;采用CT扫描探测了混凝土的细观结构损伤程度,随加热温度提高,混凝土内部裂纹的数量和尺寸逐渐增加;混凝土孔隙率随温度升高呈指数型上升趋势,弹性模量与孔隙率呈负相关的线性关系;矿物成分变化规律表明:高温条件下混凝土内部胶凝物质的脱水分解是导致其力学性能损伤的机理。  相似文献   

6.
砂岩高温后的力学特性   总被引:3,自引:3,他引:3  
对焦作砂岩在常温及经历100℃~1 200℃温度作用后的力学特性进行试验研究,详细分析加温后砂岩的表观形态、峰值应力、峰值应变、弹性模量、泊松比以及应力-应变全过程曲线等的变化情况,并对砂岩的高温劣化机制作初步探讨.研究表明,高温使砂岩的表观形态发生改变;在400℃以内,温度对砂岩的力学性能影响不大,加温对砂岩的某些力学指标有一定的增强作用;但经历的温度超过400℃后,随受热温度升高砂岩的力学性能发生劣化,砂岩的峰值应力和弹性模量均有不同幅度的降低,而800℃前砂岩的峰值应变随温度的升高而大幅增加;砂岩的变形大体随经历温度的升高而增大;600℃前砂岩的泊松比随经历温度的升高而减少,而后呈上升趋势.温度引起的热应力作用、矿物组分和微结构变化导致砂岩力学性质发生改变与高温劣化.  相似文献   

7.
通过比较河南省鹤壁市六矿煤层顶板砂岩试样从常温到600℃加温过程中超声波参数的变化,分析了砂岩内纵波波速随温度和时间共同作用的变化规律,并结合试件自然吸水和饱和吸水前后质量和超声波速度的变化,探讨岩石内孔隙的发展规律。  相似文献   

8.
长焰煤热解过程中孔隙结构演化特征研究   总被引:1,自引:0,他引:1  
随着煤热解温度的升高,煤孔隙结构和数量发生剧烈变化。为研究其变化规律,以长焰煤为研究对象,应用压汞法分别对300℃~600℃常规热解和600℃高温蒸气热解固体产物的孔隙结构参数进行测定和分析,计算不同热解温度下的孔隙分形维数,详细比较2种不同的热解方式下固体产物的孔隙特性。研究结果表明:(1)常规热解条件下,总孔隙体积和孔隙率随温度的演化表现为:黑岱沟煤先减小后增大,温度高于500℃后增长的速率较大,而子长煤先增大后减小再增大,增长速率最大的区段是300℃~400℃;比表面积随温度的演化表现为:黑岱沟煤一直增加,而子长煤持续减小。(2)常规热解条件下,长焰煤孔隙体积分布以中孔和大孔为主,温度超过300℃时,大孔占绝大多数;而比表面积的分布以微孔和过渡孔为主。(3)高温蒸气热解条件下,长焰煤热解固态产物的孔隙体积分布以中孔和大孔为主,大孔占主导地位,子长煤表现更为明显,大孔比例达99.91%;孔隙比表面积分布表现为:黑岱沟煤以微孔和过渡孔为主,而子长煤以大孔为主。(4)高温蒸气热解固体产物表现出更为优良的渗透性能,与注入惰性气体相比,注入高温蒸气是煤层原位热解工艺实施的最佳方法。在煤层原位热解工艺实施过程中,该研究可为煤体孔隙结构随温度变化问题提供科学依据和理论指导。  相似文献   

9.
混凝土原材料及强度等级不同其火灾高温响应不同,根据目前大量使用机制砂拌制混凝土的现状,研究不同强度等级的机制砂和天然砂混凝土遭遇火灾高温后产生的损伤破坏及差异,对高温作用后的混凝土测试其抗压、劈拉强度及孔隙结构,分析不同混凝土不同温度作用后力学性能、孔隙率和孔径分布的变化。结果表明,不同温度作用后混凝土性能的响应及变化规律基本相同。不同强度等级、不同种类砂子,混凝土强度损失变化规律基本相似,但强度等级越高,下降速率越大;抗压强度400℃之前下降较慢,之后强度下降迅速,尤其500~600℃抗压强度陡降,800℃后强度基本丧失;劈裂抗拉强度随温度升高急剧下降,但仍在500~600℃内强度下架速率最快,800℃后强度基本丧失;相同强度等级下机制砂混凝土抗压强度下降速率略高于天然砂混凝土。各种混凝土孔隙率及不同孔径所占比例随温度变化相似,均呈现出总孔隙率增加、无害孔及少害孔数量降低,有害孔及多害孔数量增加的趋势。不同强度等级、不同种类砂子,混凝土内部孔隙结构变化规律与抗压强度变化规律一致。  相似文献   

10.
高温影响下花岗岩孔径分布的分形结构及模型   总被引:1,自引:0,他引:1  
 温度是影响岩石物理性质的重要因素,为了探究温度对岩石孔径分布的影响规律,利用压汞法测试25 ℃~1 200 ℃高温热处理后花岗岩样品的孔隙特征,并研究了不同高温影响下岩石孔隙的分形结构和孔隙率演化模型。结果表明:(1) 随着温度的升高,岩石孔隙率呈指数增加,500 ℃~800 ℃是岩石孔隙结构变化的阈值温度区间,500 ℃之前孔隙率增长较缓慢,增长幅度约50%,之后孔隙率大幅增加3~5倍;(2) 温度升高所导致的岩石新孔隙以孔径1~10 μm的中孔为主,低于500 ℃时中孔占15%左右,而后稳步上升,800 ℃时大幅增加至28.24%,1 000 ℃以后又增至40%以上,体积增长了11.8倍,这将导致岩石防渗阻渗能力大大减弱;(3) 各温度下岩石孔隙分布均具有良好的统计分形特性,孔隙分形维数在2.99~3.00范围,随温度升高,分形维数降低,且温度越高,降低幅度越大,表明孔隙均匀性增加;(4) 基于理想Menger海绵的Friesen模型预测各孔径下累计孔隙率演化误差较大,而张季如和陶高梁模型对不同高温岩石孔径分布具有良好的预测精度。研究结果将为高放核废料深层地下存储、地热开发等高温岩石工程设计及施工提供科学依据。  相似文献   

11.
温度对砂岩损伤影响试验研究   总被引:4,自引:1,他引:3  
 以砂岩试件为研究对象,研究该批试件高温前后的均匀性、高温后的超声波传播规律及孔隙率变化规律。通过研究高温后砂岩的超声波速变化、孔隙率变化规律,得到了温度对砂岩损伤的影响规律。结果表明,除温度为200 ℃时,超声波速略有升高外,随着砂岩经历温度的升高,超声波在其内部的传播速度逐渐降低,孔隙率随经历温度的升高而逐渐变大;这两个事实都说明砂岩经历高温后内部产生了损伤。建立了超声波速与损伤因子的关系,并且得到该砂岩随经历温度的升高损伤因子逐渐增大的规律。  相似文献   

12.
对经25~1 000℃作用后的黄砂岩进行常规三轴压缩试验,研究黄砂岩的表观形态和力学特性。研究结果表明:经不同温度作用后,黄砂岩呈不同的颜色,总体上随着温度的升高,颜色会加深。经600℃作用后,受温度影响岩体体积膨胀逐渐明显,体积变化率增大。温度从25℃升到1 000℃的过程中,黄砂岩的密度和弹性模量随温度的上升逐渐降低。围压作用下的黄砂岩,在600℃之前,峰值强度随温度的升高明显呈二次非线性升高,弹性模量下降较小;在600~1 000℃时,峰值强度随温度变化呈二次非线性下降趋势,弹性模量也呈下降趋势,且温度越高,降幅越大。黄砂岩经不同温度作用后,在围压由5 MPa增大到15 MPa时,其最大振铃计数率及累计振铃计数率均发生改变。  相似文献   

13.
为研究高温状态下岩石动态力学性能,利用变截面SHPB试验装置及配套高温环境箱,对常温(25℃),200℃,400℃,600℃,800℃和1 000℃共6种温度作用下砂岩试件,进行6种加载速率冲击压缩试验。结果表明:(1)动态峰值应力与加载速率呈二次多项式函数关系,正相关性显著。200℃~800℃温度具有强化作用,200℃时最明显;1 000℃温度具有软化作用。(2)动态峰值应变与加载速率近似为二次多项式函数关系,正相关性明显。200℃~600℃温度作用影响不明显;800℃温度作用明显,1 000℃时温度作用显著。(3)动态弹性模量受加载速率作用不明显,随温度升高整体呈下降趋势。200℃~600℃时幅值变化在一定范围;800℃和1 000℃时幅值相对较小。(4)试件破坏形态不同,随温度增加由脆性破坏向延脆性破坏转化。随加载速率增大,破裂面逐渐增多,破碎程度加剧,碎块尺寸减小。1000℃时,加载速率较小时破碎效果不明显,加载速率较大时破碎效果显著。  相似文献   

14.
针对常温(25℃),200℃,400℃,600℃和800℃温度处理后的花岗岩圆盘试样开展巴西劈裂试验,分析抗拉强度、体积膨胀率、P波波速等宏观物理力学性质的变化情况,同时研究温度对花岗岩微观结构和声发射特性的影响。研究结果表明:(1)扫描电镜扫描的结果显示,花岗岩经高温处理后内部萌生微裂纹,随着处理温度升高,微裂纹数目增多、延伸长度增长、张开宽度及扩展范围增大,且不同矿物成分的温度敏感性存在差异;(2)花岗岩经高温处理后抗拉强度下降,体积膨胀,P波波速降低;(3)在400℃~600℃范围内,P波波速骤降且试样切片的裂纹密度骤增,表明花岗岩热损伤阈值温度在此温度区间内;(4)声发射监测的结果显示,不同温度处理后试样的声发射事件时序分布存在差异,较高温度(600℃和800℃)处理后的圆盘试样,其加载过程中的声发射事件数目明显少于较低温度(≤400℃)处理后的圆盘试样,且试样破坏前夕声发射事件的增幅显著减小,声发射事件的定位结果与宏观劈裂裂纹的对应性减弱。  相似文献   

15.
探究高温循环下岩石内部孔隙演化及其对物理力学特性的影响,对核废料地质处置、地热开发等地下工程的长期稳定性分析具有重要意义。为了定量分析高温循环对花岗岩孔隙结构及物理力学性质的影响,综合利用扫描电镜、差热分析等方法研究25℃~800℃高温循环下花岗岩的表面特征、质量、体积、纵波波速、抗拉强度、孔隙度、孔径分布和微观结构等演化规律。研究结果表明:(1)随着温度升高,花岗岩的表面裂纹、色差、质量损失率、体积膨胀率、纵波波速衰减率不断增加,抗拉强度逐渐减小,当T>500℃后,花岗岩的物理力学参数变化显著,在5次热循环后,岩石物理力学参数的变化更加明显。(2)高温能够促进花岗岩孔隙发育,岩石内部微、小孔隙逐渐生长并连通形成中、大孔隙,造成岩石孔隙连通性增强,且热循环会进一步增加孔隙结构之间的连通性,导致中孔和大孔占比上升,孔隙率进一步增大。(3)高温循环下花岗岩物理力学性质劣化与其内部孔隙结构的变化密切相关,质量损失率和体积膨胀率随等效平均孔隙半径的增大呈线性增加,纵波波速和抗拉强度随等效平均孔隙半径的增大呈指数型增加。(4)高温下花岗岩会发生脱水、石英相变、矿物氧化、化学键断裂等物理化学...  相似文献   

16.
高温作用后岩石内部结构会发生变化,并导致其抗拉强度也发生相应变化。本次试验利用高温炉和电液伺服试验机研究了高温作用后砂岩抗拉强度的变化特征。研究结果表明:砂岩抗拉强度随温度的升高(25~900℃)整体呈下降趋势,抗拉强度—温度的变化曲线可分为四个阶段:温度从25℃至300℃,砂岩抗拉强度因自由水、结合水的蒸发缓慢减小;温度从300℃至600℃,砂岩因结晶水、结构水蒸发以及结构热应力的作用,抗拉强度迅速降低;从600℃升至800℃,砂岩矿物的熔融及钙、镁等碳酸盐的分解使其抗拉强度持续下降;温度从800℃升至900℃,热应力继续增大,砂岩抗拉强度随着宏观裂隙的形成而急剧减小。  相似文献   

17.
为探究高温–水冷却花岗岩的应变率效应,使用MXQ1700箱式气氛炉制备200℃,400℃,600℃,800℃和1 000℃共5种高温花岗岩试样并用水冷却,随后利用分离式霍普金森压杆系统对常温试样和高温–水冷却花岗岩试样进行4种不同冲击速率的动态压缩试验(冲击气压分别为0.30,0.40,0.50和0.60MPa)。此外,还通过压汞和扫描电镜试验获得高温–水冷却花岗岩试样的孔径分布、孔隙率和微观形貌。微观结果表明:试样内部损伤以400℃为界可分为两个阶段,400℃之前,高温–水冷却花岗岩试样内部以微孔和小孔为主,孔隙率低于2.20%,损伤较小,当温度超过400℃后,内部中孔比例快速增加,孔隙率上升,损伤随温度升高而加剧。应变率效应方面:在相同温度条件下,高温–水冷却花岗岩试样的动态峰值应力和峰值应变均随应变率的增加而增大,而弹性模量的应变率效应不明显;花岗岩试样破碎程度随损伤的增加而加剧,且分形维数随着应变率的增大而增加;分析内部损伤和外界冲击速度对花岗岩试样应变率的影响,并获得应变率随内部损伤和冲击速度变化的拟合公式。  相似文献   

18.
化学腐蚀下砂岩孔隙结构变化的机制研究   总被引:7,自引:3,他引:4  
利用SEM电镜扫描技术和X衍射晶体鉴定技术,对经0.01 mol/L,pH值为12的NaOH溶液作用前后的( 50 mm×100 mm大小砂岩试件的表面和矿物成分进行分析,探讨砂岩试件腐蚀表面的微区形貌和矿物组成的变化特征.通过一系列室内试验,对0.01 mol/L,pH值为12的NaOH溶液作用下不同时刻砂岩试件的孔隙率、溶液pH值进行测定,并对其变化规律进行分析,得出砂岩孔隙率变化受溶液酸碱度影响和制约的结论.基于化学动力学理论和溶质迁移理论,建立水岩系统的对流-扩散-反应模型,运用孔隙率的变化来定量描述由于水岩作用引起的岩石细观结构的变化.采用有限元法对0.01 mol/L,pH值为12的NaOH溶液的作用下砂岩孔隙率的动态演化过程进行数值计算,结果表明,数值解与试验结果吻合较好.该研究为定量研究化学腐蚀作用对岩石物理力学特性的影响提供了重要依据,为更准确地评估和计算坝基、边坡、核废料处置库、隧道等众多与水化学相关的岩石工程的安全性和稳定性提供了有效的解决手段和分析方法.  相似文献   

19.
 为研究温度作用后黏土孔隙与力学参数变化规律,以不同温度作用后黏土为研究对象,主要采用压汞法、单轴压缩试验,着重分析其孔隙度、渗透率、体积分维数、单轴抗压强度、普氏系数变化规律。得到以下结论:试样中孔隙开放孔较多,孔隙连通性较好,孔隙主要以500 nm~1 000 nm为主;试验温度范围内,大孔总体积随温度的升高而增大,100 ℃~650 ℃之间,微孔总体积随温度的升高而增大,650 ℃以后,随温度的升高而减小;100 ℃~700 ℃之间孔隙度随温度的升高而增大,700 ℃以后有所减小;采用Menger海绵体模型和热力学模型得到的体积分维数随温度的升高整体减小,而采用热力学方法得到的孔隙分维值更能表征试样孔隙特征;100 ℃~700 ℃之间渗透率随着温度升高而增大,700 ℃以后有所减小;100 ℃~400 ℃之间,单轴抗压强度和普氏系数基本维持不变,400 ℃~700 ℃之间,两者随温度的升高快速增大,700 ℃以后,两者随温度的升高而减小,这与试样内部矿物的转变密切相关。  相似文献   

20.
高温后粗砂岩常规三轴压缩条件下力学特性 试验研究   总被引:13,自引:5,他引:8  
 通过在MTS815.03电液伺服岩石力学试验机上对焦作方庄煤矿煤层顶板粗砂岩进行高温后常规三轴压缩试验,基于试验结果研究不同温度作用后常规三向压缩条件下粗砂岩宏观力学特性,分析粗砂岩强度、平均模量、黏聚力、内摩擦角和极限应变与温度的关系;同时对粗砂岩强度、平均模量与围压关系进行探讨。研究结果表明,围压一定,温度为25 ℃~300 ℃时,随着温度的升高,试样的强度、平均模量、黏聚力、内摩擦角均逐渐增大,而变形模量有所降低。高温产生的热应力起到容纳变形和裂隙闭合作用,砂岩试件部分原生裂隙逐渐愈合,裂隙数量减少,密实程度提高,矿物颗粒间接触关系得到改善,摩擦特性得以增强;超过300 ℃ 以后,随着温度的升高,粗砂岩试样的强度、平均模量、黏聚力、内摩擦角均有所减小,而峰值变形逐渐增大,由高温引起的粗砂岩矿物颗粒的不同热膨胀率导致跨颗粒边界的热膨胀不协调,从而产生结构热应力使试样内部产生微裂隙,试样承载能力和抗变形能力减弱。而围压对粗砂岩的力学性质起到改善和强化作用,当温度一定时,随着围压的升高,粗砂岩试件强度、平均模量、黏聚力、内摩擦角均逐渐增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号