首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
直线电机的H_∞迭代学习控制设计   总被引:2,自引:0,他引:2  
直线电机的诸多非线性与不确定性因素是影响其控制精度的主要原因.文中基于H∞理论和迭代学习控制思想,设计应用于直线电机运动系统的迭代学习控制器,利用鲁棒控制实现系统镇定和克服各种不重复干扰和不确定性的影响,利用迭代学习控制提高系统的跟踪性能并克服重复性干扰的影响.仿真实验结果表明,采用H∞迭代学习控制器的直线电机运动系统的跟踪性与抗扰性均明显改善.基于H∞的迭代学习控制能够提高直线电机运动系统的控制性能.  相似文献   

2.
光刻机的工件台是高动态精密伺服运动平台,它要求在系统高速运动的同时,采用长行程直线电机宏动跟随音圈电机高精密微动的驱动方式,实现系统纳米级的精确定位及跟踪。为减小微动电机的运动范围和加速度,必须提高直线电机的跟踪精度。针对该系统的直线电机模型设计了一种线性自抗扰控制方法,该方法的控制器首先通过扩张状态观测器观测系统的动态变化,补偿系统中的各种扰动,再运用前馈对系统的跟踪误差进行补偿,减小系统的动态跟踪误差。在此复合控制方式下,控制器实现了自抗扰控制,前馈控制器很好的补偿了误差,从而提高了系统的抗干扰和跟踪性能。实验表明,该方法与传统的控制方法相比,改善了系统的动态性能和抗干扰能力。  相似文献   

3.
0.1um光刻机硅片台在扫描曝光过程中要求纳米级的轨迹精度,采用直线电机承担大行程粗动控制和洛沦磁电机承担高精度微动控制的复合运动能满足要求.为减小微动电机的运动范围和加速度,必须提高直线电机的位置控制精度.介绍了高精度永磁直线交流同步电机的IP位置控制算法,提出采用最优预测前馈补偿,提高实时跟踪性能,增强抗干扰能力,以满足直线电机的高速度高精度位置控制要求.  相似文献   

4.
樊立萍  王喜阳 《微电机》2007,40(1):22-24
直线电机的诸多非线性因素是影响其控制精度的主要原因。迭代学习控制能充分借助历史控制信息构成当前控制输入且不依赖被控系统的详细模型。基于迭代学习控制思想,在PID控制的基础上,设计应用于直线电机运动系统的迭代学习控制器(ILC)。仿真结果表明,迭代学习控制器能够克服非线性特性对直线电机运动系统的影响,提高系统控制精度。  相似文献   

5.
永磁直线同步电动机的自适应学习控制   总被引:8,自引:8,他引:8  
由于没有传动机构,使永磁直线交流同步电机(PMLSM)控制器设计较为复杂.PMLSM对模型不确定性和外扰更加敏感;推力波动等非线性因素对运动精度影响很大.针对上述问题,用自适应学习方法改善PMLSM的轨迹跟踪性能,并对迭代模式和单次运行模式下算法的收敛性进行了证明,通过实验进行了算法验证.该控制方法基于迭代学习,控制器分为两个部分,通过执行重复任务自适应学习项补偿系统的非线性;另一项用于增强系统的鲁棒性,保证系统在单次运动模式下稳定.实验结果表明,这种控制方法可以有效提高PMLSM轨迹跟踪精度.  相似文献   

6.
依据数据驱动控制方法的特性,提出了带有迭代学习前馈的非圆车削刀具进给的无模型自适应控制算法,组合化的控制器设计方案实现了无模型自适应反馈控制算法用来稳定系统,学习控制算法用于刀具进给直线电机控制系统的非线性补偿.通过永磁同步直线电机刀具进给驱动系统的实时实验,验证了该组合方法增强了单独使用PID算法的控制性能,提高了非圆车削刀具进给直线伺服系统的位置跟踪精度.  相似文献   

7.
直线电机系统中,推力波动具有很强的非线性特点,是影响直线电机控制性能的重要因素之一。以结构风险最小化为学习规则的支持向量机进行推力波动模型辨识,来构成具有推力波动前馈补偿自适应控制单元的直线电机PID控制系统。该控制系统集合了PID线性控制和推力非线性补偿控制,以提高直线电机的轨迹跟踪精度。最后由Matlab仿真结果表明,基于支持向量机的推力波动模型比基于最小二乘法具有更高的辨识精度,控制系统具有更小的轨迹跟踪误差、更强的抗干扰性,从而提高直线电机定位精度。  相似文献   

8.
卢桂云  王丽红 《电气传动》2020,(1):53-56,76
以电子凸轮为研究对象,提出一种轨迹跟踪控制方法。阐述了电子凸轮运动规律,在此基础上基于3次非均匀B样条曲线给出了一种凸轮曲线设计方法。为提高凸轮轨迹跟踪精度,设计了模糊滑模迭代控制器。迭代学习控制算法可用于实现目标轨迹的跟踪;模糊控制和滑模控制则可以提高电子凸轮的收敛速度与鲁棒性。滑模控制器处理轨迹偏差及其变化率;模糊控制器对滑模输出进行模糊化和解模糊化处理;通过实时控制调节迭代学习控制器的增量得到理想的轨迹跟踪效果。针对基于伺服电机的电子凸轮,控制系统给出了具体硬件架构。通过实验验证表明,模糊滑模迭代控制算法能够满足电子凸轮对轨迹跟踪精度与鲁棒性的要求,电子凸轮能够有效取代传统的机械凸轮机构。  相似文献   

9.
《微电机》2017,(5)
为取得满意的控制效果,通常采用较为复杂的控制策略以克服超声波电机的非线性及时变特性,但随之带来了系统复杂度的提高与性价比的降低。迭代学习控制策略的算法复杂度相对较低,且能有效跟踪重复运行轨迹。本文设计超声波电机转速、位置双闭环控制系统,转速内环采用变参数PID控制器。基于改进的双层最优迭代学习控制策略,设计了超声波电机位置闭环控制器。应用表明,所提超声波电机迭代学习控制策略有效,且控制性能优于传统的PD型迭代学习策略。  相似文献   

10.
针对数控机床要达到高速高精度切削的要求,在实际加工应用中,常需在有限行程中作连续性的周期运动,这就要求对周期性轨迹具有跟踪能力和对周期性扰动具有抑制能力。永磁直线同步电机(PMLSM)高速、高响应和直接驱动等优点,使之在高档数控机床中广泛地应用。直线伺服控制系统的基本要求是控制器的设计应有调节能力,分析直线电机伺服控制系统的周期运动特性,设计了基于重复控制器PMLSM伺服系统,以消除周期性参考输入的稳态跟踪误差,实现周期性输入信号的精确跟踪和对周期性扰动的有效抑制。仿真结果表明所提出的控制方案是有效的,提高了系统跟踪精度。  相似文献   

11.
基于迭代学习与FIR滤波器的PMLSM高精密控制   总被引:1,自引:0,他引:1  
针对永磁直线同步电机(PMLSM)运行时易受端部效应、摩擦力、负载扰动、参数变化等不确定性因素的影响而难以达到高精度跟踪控制的问题,提出一种基于迭代学习与有限冲击响应(FIR)滤波器的控制方案。PMLSM伺服系统执行重复任务时,迭代学习控制(ILC)可有效地抑制重复性扰动,具有很高的控制精度,但执行非重复性任务时很难获得较高的控制精度。为了进一步改善基于ILC的PMLSM伺服系统运行迭代1次的跟踪精度,利用ILC的输出信息来设计FIR滤波器,进而用FIR滤波器来代替ILC,使控制系统达到最优的ILC,以提高系统的跟踪精度。采用滑模控制(SMC)对FIR滤波器进行补充,使位置误差快速收敛到一定的界限内,以提高系统的抗扰能力。实验结果表明,所提出的控制方案使系统具有很高的位置跟踪精度和很强的鲁棒性。  相似文献   

12.
在永磁直线同步电机驱动伺服系统的迭代学习控制(ILC)过程中,针对由于每次运行时跟踪误差的累积,导致系统出现收敛速度降低甚至发散的现象,提出一种基于经验模态分解(EMD)算法的迭代学习控制方法。首先设计闭环ILC控制器,然后利用EMD算法分解ILC过程中的跟踪误差,筛选并消除其中发散的分量,保证ILC的收敛性,提高ILC的收敛速度。仿真和实验结果表明,与传统ILC相比,所提出的控制方法能够使系统的跟踪效果更好,且保证了伺服系统的输出轨迹在较少的迭代次数下快速精确地收敛到期望轨迹。  相似文献   

13.
关丽荣 《电气自动化》2012,34(5):4-5,28
针对永磁直线同步电机(PMLSM)伺服系统,在分析影响直线伺服跟踪精度因素的基础上,采用智能反推控制策略对该伺服系统进行有效的补偿控制。考虑参数变化、外部负载扰动和摩擦力等不确定因素对系统伺服性能的影响,设计基于递归模糊神经网络(RFNN)的反推控制器,利用了递归神经网络具有捕获系统动态信息的优点,可实时补偿不确定因素对跟踪性能的影响。仿真结果表明,控制策略明显降低了不确定因素对系统性能的影响,从而显著提高了直线伺服系统的位置跟踪精度。  相似文献   

14.
针对执行重复任务的永磁直线同步电机(PMLSM)在迭代学习过程中易受负载扰动、参数变化等非重复性扰动的影响而难以实现高性能跟踪控制的问题,提出了一种迭代学习控制(ILC)与变论域模糊控制相结合的分段变论域模糊ILC方法。在误差较大的时间段,采用变论域模糊控制实时地改变ILC的学习增益,并智能地调整模糊控制的论域,抑制不确定性因素对系统的影响,提高控制精度;在误差较小的时间段,采用PD型ILC,使学习增益稳定,进一步减小位置误差。实验结果表明,该控制方法可以有效地加快收敛速度,提高位置跟踪精度,并增强系统的鲁棒性。  相似文献   

15.
永磁直线同步电机的智能互补滑模控制   总被引:1,自引:0,他引:1  
针对永磁直线同步电机(PMLSM)伺服系统的位置跟踪精度问题,提出了一种基于径向基函数(RBF)神经网络的智能互补滑模控制(ICSMC)方法。建立了包含端部效应、参数变化、外部扰动及非线性摩擦等不确定性因素的PMLSM动态方程。设计了互补滑模控制器,采用广义滑模面和互补滑模面相结合的设计,降低了系统跟踪误差,提高了系统响应速度,并削弱了抖振现象;利用RBF神经网络直接对系统存在的不确定性进行估计,在线调整RBF网络参数以改善系统动态性能,提高系统鲁棒性,并用李雅普诺夫定理保证系统闭环稳定性。通过分析系统实验结果,验证了所提出的控制方法有效降低了系统跟踪误差,并使系统具有良好的动态性能和鲁棒性能。  相似文献   

16.
针对永磁直线同步电机直接驱动伺服系统的位置跟踪精度易受参数变化、外部扰动、端部效应等不确定性因素的影响,提出了一种将小波神经网络(wavelet neural network,WNN)和增量滑模控制器相结合的智能增量滑模控制方法。利用系统先前的状态信息和控制动作作为反馈量,同时选择饱和函数作为切换函数来设计增量滑模控制器,不仅削弱了抖振,而且提高了系统的跟踪性能;利用WNN实时观测和补偿参数变化和外部扰动等影响,并采用改进的粒子群优化算法在线调整WNN的学习率,对不确定因素进行实时估计。从理论上分析证明了此控制器可以保证系统收敛,提高了直线伺服系统的控制性能。通过系统实验,证明了所提出方案的有效性,与滑模控制(sliding mode control,SMC)相比,系统具有强鲁棒性和良好的位置跟踪精度,明显地削弱了抖振现象。  相似文献   

17.
针对永磁直线同步电机(PMLSM)易受非线性因素影响而降低伺服系统鲁棒性的问题,提出一种自适应互补滑模控制方法。永磁直线同步电机的非线性因素包括系统参数变化、电机端部效应及外部不确定性的扰动。互补滑模控制将积分滑模面与广义误差滑模面相结合,将系统状态轨迹限定在两个面的交线上,缩短了状态轨迹达到滑模面的时间,提高了位置跟踪精度。为了进一步改善系统鲁棒跟踪性能,利用自适应控制对不确定扰动因素的上界进行估计,减小不确定因素对系统的影响,改善滑模控制的抖振现象。实验结果表明所提出的控制方法是有效可行的,自适应互补滑模控制不仅提高了系统的跟踪性能,而且更有效地抑制了不确定因素对控制系统的影响。  相似文献   

18.
针对高精度数控机床用交流永磁直线同步电机(PMLSM)伺服系统高精度快速响应的运行要求,在分析研究PMLSM的端部效应对直线伺服系统性能影响的基础上,引入神经网络补偿技术,使系统具有自学习能力,实时补偿端部效应引起的非线性时变扰动。设计了一种鲁棒性较强的基于双神经网络的前馈给定补偿口位置复合控制策略。仿真结果表明,该方案有效地克服了PMLSM特有的端部效应所产生的推力波动对系统的影响,具有很强的鲁棒性,而且提高了系统的稳态性能。  相似文献   

19.
对于可控励磁磁悬浮直线同步电机(CEMLLSM),常规迭代学习控制(ILC)精度低、抖振大,且抗外部扰动能力差。为提高跟踪精度,设计了一种基于扩张状态观测器(ESO)的变增益自适应ILC算法。首先,研究CEMLLSM的工作原理及数学模型。其次,设计基于ESO的变增益自适应迭代学习控制器,为控制器中固定增益部分引入指数可变增益,增加自适应迭代项对控制律中的未知参数进行迭代学习,从而减小系统抖振与误差并加快系统收敛速度。通过引入ESO观测系统的外部干扰,对控制量进行补偿,进而提高系统的抗扰动能力。最后,用MATLAB对控制系统进行仿真分析,仿真结果表明该算法能够有效减小跟踪误差,并对扰动有良好的抑制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号