首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
以[Ni1/3Co1/3Mn1/3]3O4和氢氧化锂为原料,分别采用球磨法和液相法前处理工艺制备层状正极材料Li[Ni1/3Mn1/3Co1/3]O2。采用X?射线衍射(XRD)、场发射扫描电镜(FESEM)、恒流充放电等手段对材料的物理和电化学性能进行表征。结果表明:采用不同前处理工艺制备出的Li[Ni1/3Mn1/3Co1/3]O2材料在结构、形貌和电化学性能上有较大差异;与球磨处理法制备的材料相比,采用液相法前处理工艺制备的Li[Ni1/3Mn1/3Co1/3]O2不但保持了前驱体较好的球形形貌,同时还具有较好的循环稳定性和倍率性能;该样品在20mA/g电流密度下,首次放电容量为178mA·h/g,50次循环后,容量保持率达98.7%;在1000mA/g电流密度下,样品容量为135mA·h/g。  相似文献   

2.
采用液相共沉淀方法合成锂离子电池用Li(Ni3/8Co3/8Mn2/8)O2正极材料,以XRD、SEM、原子吸收光谱法和电池充放电循环测试方法表征Li(Ni3/8Co3/8Mn2/8)O2粉末的结构和性能.结果表明:900℃焙烧10 h合成的Li(Ni3/8Co3/8Mn2/8)O2粉末样品具有较好的综合电化学性能和良好的六角层状结构,阳离子混合度小,六角晶格有序性高,颗粒为由小晶粒结合而成的多晶体,平均粒径约为4.5 μm,I003/I104为1.25,R值为0.48,首次放电容量为172.9 mA·h/g(2.8~4.5 V,0.1C倍率),0.2C倍率循环20次后电容量为首次循环放电容量的96.1%.  相似文献   

3.
利用共沉淀法和控制结晶氧化法在不同条件下分别制备出低价态球形Ni1/3Co1/3Mn1/3(OH)2和高价态球形Ni1/3Co1/3Mn1/3OOH前驱体,并分别和LiOH·H2O在不同温度烧结合成出球形锂离子正极材料Li(Ni1/3Co1/3Mn1/3)O2.XPS分析表明,制备的高价态球形Ni1/3Co1/3Mn1/3OOH前驱体其过渡金属Ni、Co和Mn的价态分别是2+,3+,4+,XRD分析表明,高价态球形Ni1/3Co1/3Mn1/3OOH前驱体比低价态球形Ni1/3Co1/3Mn1/3(OH)2前驱体具有较高的活性,能够在低温下合成出Li(Ni1/3Co1/3Mn1/3)O2,而且制备的产物结晶度高,阳离子混排程度小,具有规整的层状a-NaFeO2结构.充放电实验表明,由高价态球形Ni1/3Co1/3Mn1/3OOH前驱体制备的Li(Ni1/3Col/3Mn1/3)O2具有优良的充放电性能和循环性能.  相似文献   

4.
利用低共熔组成的0.24LiCO3-0.76LiOH混合锂盐体系,与钴、镍、锰的球形氢氧化物按1.1:1混合,无需前期球磨,直接经二段控温程序制备出锂离子正极材料LiNi1/3Co1/3Mn1/3O2。X射线衍射分析表明合成的Li(Ni1/3Co1/3Mn1/3)O2结晶度高,具有规整的层状α-NaFeO2结构,扫描电镜显示产物颗粒均匀,振实密度高达2.89g·cm-3,显著高于用单一锂盐制备的同样产品(2.4g·cm-3)。充放电测试表明,材料具有良好的电性能,首次充放电容量为176和166mhA·g-1,循环50次后,材料的电性能没有明显的衰减。  相似文献   

5.
球形LiNi1/3Co1/3Mn1/3O2的合成及其电化学性能   总被引:3,自引:0,他引:3  
以化学共沉淀法制备的球形Ni1/3Co1/3Mn1/3CO3为前驱体合成了球形LiNi1/3Co1/3Mn1/3O2,研究LiNi1/3Co1/3Mn1/3O2合成工艺对产物形貌的影响.结果表明直接以前驱体Ni1/3Co1/3Mn1/3CO3与Li2CO3反应合成的LiNi1/3Co1/3Mn1/3O2的一次颗粒较大,以前驱体分解后的氧化物与Li2CO3反应合成的LiNi1/3Co1/3Mn1/3O2的一次颗粒相对细小;合成的LiNi1/3Co1/3Mn1/3O2均为具有层状结构的纯相物质;球形正极材料LiNi1/3Co1/3Mn1/3O2充放电过程中存在一个材料活化的过程,在前10周期充放电时,电池容量处于增加的状态;在2.7~4.3 V的电压范围内1 C倍率下电池的放电比容量达到149 mA·h/g,0.2 C倍率下为158 mA·h/g,经50次循环后容量无衰减.  相似文献   

6.
以碳酸盐为沉淀剂,采用共沉淀法合成晶型良好的亚微米级Li(Ni1/3Co1/3Mn1/3)O2粉末,并将其与AgNO3复合,采用无电流分解沉积法制备出了Ag表面修饰的Li(Ni1/3Co1/3Mn1/3)O2/Ag电极材料.利用X-射线衍射、扫描电镜及电化学测试等方法表征材料的结构、形貌和电化学性能.结果表明:Ag单质的存在可明显改善Li(Ni1/3Co1/3Mn1/3)O2的电化学性能,尤其是倍率特性,以0.2C、0.5C、1C倍率放电进行测试,经过40次循环后比容量分别为156.2、144.3、137.7mAh·g-1,其容量保持率分别为96.2%、95.3%、93.9%.Ag的表面修饰能使Li(Ni1/3Co1/3Mn1/3)O2电荷转移阻抗大幅度减小,阻抗从65Ω减小到50Ω.  相似文献   

7.
以LiOH.H2O、Ni(OH)2和Mn3O4为原料,采用固相法合成锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)对所得样品的结构和形貌进行表征,并测试了该材料的倍率性能和高低温性能。结果表明:900℃下烧结10 h后可获得晶粒细小均匀的层状Li[Li0.2Ni0.2Mn0.6]O2材料,并具有良好的电化学性能,放电容量最高可达235.9 mA.h/g;在50℃下测试时该材料的放电容量高达284.4 mA.h/g,并表现出良好的循环性能,其倍率性能和低温性能还有待进一步改善。  相似文献   

8.
以乙酸盐为原料,采用喷雾干燥法制备层状α-NaFeO2结构的富锂正极材料Li[Li0.2Ni0.2Mn0.6]O2及掺杂Cr的Li[Li0.2Ni0.15Cr0.1Mn0.55]O2。采用X射线衍射、扫描电镜、半电池充放电和电化学阻抗谱等方法研究材料的物相、结构、形貌及电化学性能。结果表明:Cr掺杂使材料的颗粒变粗,但不改变材料的结构,而使材料的层状特征更为明显;Cr掺杂后材料的电化学性能得到明显改善,电荷转移阻抗Rct从275.0降低到105.0,循环稳定性和倍率性能均有所改善,Li[Li0.2Ni0.15Cr0.1Mn0.55]O2材料1C倍率下的放电比容量为140.0 mA.h/g,循环50次后放电比容量为133.7 mA.h/g,远高于未掺杂Cr材料的比容量,未掺杂Cr材料在1C倍率下放电比容量为107.1mA.h/g,循环50次后放电比容量为102.1 mA.h/g。  相似文献   

9.
Li(Mn1/3Ni1/3Co1/3)1-yMyO2(M=Al,Mg,Ti)正极材料的制备及性能   总被引:6,自引:0,他引:6  
采用液相共沉淀合成锰镍钴氢氧化物前驱体, 在前驱体中掺入元素M(M=Al, Mg, Ti), 与锂结合生成Li(Mn1/3Ni1/3Co1/3)0.98M0.02O2材料, 结果表明掺杂可有效提高材料的循环性能. X射线衍射结果表明 随掺钛量增大(0≤y≤0.15), 晶格畸变增大, 半高宽变大, 晶粒粒径增大; 其中掺钛量y=0.1的材料电化学性能表现最好, 以20 mA/g电流充放电, 在2.5~4.6 V电压区首次放电容量可达215 mA·h/g.  相似文献   

10.
采用草酸盐前驱体合成Ti4+、Mg2+掺杂正极材料Li(Ni1/3Co1/3-xMn1/3)MxO2(M=Ti, Mg).利用XRD和SEM对其结构和形貌进行表征,并采用循环伏安、交流阻抗、恒流/恒压充放电测试其电化学性能.结果表明:Ti4+、Mg2+掺杂后晶胞体积增大,大倍率充放电时LiNi1/3Co1/3Mn1/3O2的电化学反应阻抗Rct降低,其大倍率充放电性能得到改善,Ti4+掺杂效果更好;当掺杂量x=0.025时,材料晶型完整,具有单一的a-NaFeO2层状结构;1C倍率时Li(Ni1/3Co1/3-0.025Mn1/3)Ti0.025O2的第二循环放电容量为143.2 mA-h/g,2C时为128.0 mA-h/g,经100次循环后容量分别为132.5和115.8 mA-h/g,容量保持率为92.53%和90.47%.  相似文献   

11.
The uniform layered Li(Ni2/8Co3/8Mn3/8)O2, Li(Ni3/8Co2/8Mn3/8)O2, and Li(Ni3/8Co3/8Mn2/8)O2 cathode materials for lithium ion batteries were prepared using the hydroxide co-precipitation method. The effects of calcination temperature and transition metal contents on the structure and electrochemical properties of the Li-Ni-Co-Mn-O were systemically studied. The results of XRD and electrochemical performance measurement show that the ideal preparation conditions were to prepare the Li(Ni3/8Co3/8Mn2/8)O2 cathode material calcined at 900℃ for 10 h. The well-ordered Li(Ni3/8Co3/8Mn2/8)O2 synthesized under the optimal conditions has the I003/I104 ratio of 1.25 and the R value of 0.48 and pedance of 558 Ω after the first cycle. The decrease of Ni content results in the decrease of discharge capacity and the bad cycling perform-ance of the Li-Ni-Co-Mn-O cathode materials, but the decreases of Mn content and Co content to a certain extent can improve the electro-chemical properties of the Li-Ni-Co-Mn-O cathode materials.  相似文献   

12.
To obtain homogenous layered oxide Li(Co1/3Ni1/3Ni1/3Mn1/3)O2 as a lithium insertion positive electrode material,the sol-gel process using citric acid as a chelating agent was applied.The material Li(Co1/3,Ni1/3Mn1/3)O2 was synthesized at different calcination temperatures.XRD experiment indicated that the hyered Li(Co1/3Ni1/3Mn1/3)O2material could he synthesized at a lower temperature of 800℃,and the oxidation state of Co,Ni,and Mn in the cathode confirmed by XPS were 3, 2,and 4,respectively.SEM observations showed that the synthesized material could form homogenous particle morphology with the particle size of about 200nm In spite of different calcination temperatures,the charge-discharge curves of all the samples for the initial cycle were similar,and the cathode synthesized at 900℃ showed a small irreversible capacity loss of 11.24% and a high discharge capacity of 212.2 mAh.g-1 in the voltage range of 2.9-4.6 V.  相似文献   

13.
Employing Li2CO3, NiO, Co3O4, and MnCO3 powders as starting materials, Li[Ni1/3Co1/3Mn1/3]O2 was synthesized by solid-state reaction method.Various grinding aids were applied during milling in order to optimize the synthesis process.After successive heat treatments at 650 and 950 ℃, the prepared powders were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy, and transmission electron microscopy.The powders prepared by adding salt (NaCl) as grinding aid exhibit a clear R3m layer structure.The powders by other grinding aids like heptane show some impurity peaks in the XRD pattern.The former powders show a uniform particle size distribution of less than 1 μm average size while the latter shows a wide distribution ranging from 1 to 10 μm.Energy dispersive X-ray (EDX) analysiss show that the ratio of Ni, Co, and Mn content in the powder is approximately 1/3, 1/3, and 1/3, respecively.The EDX data indicate no incorporation of sodium or chlorine into the powders.Charge-discharge tests gave an initial discharge capacity of 160 mAh·g-1 for the powders with NaCl addition while 70 mAh·g-1 for the powders with heptane.  相似文献   

14.
The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calcination temperature and time on the structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 were systemically studied. XRD results revealed that the optimal calcination conditions to prepare the layered LiNi1/3Co1/3Mn1/3O2 were 950°C for 15 h. Electrochemical measurement showed that the sample prepared under the such conditions has the highest initial discharge capacity of 160.8 mAh/g and the smallest irreversible capacity loss of 13.5% as well as stable cycling performance at a constant current density of 30 mA/g between 2.5 and 4.3 V versus Li at room temperature.  相似文献   

15.
1 INTRODUCTIONDue to the high cost of LiCoO2,a commonlyused cathode material in commercial rechargeablelithium-ion batteries , much efforts have been madeto develop cheaper cathode materials than LiCoO2,Li Ni O2and Li MnO2have been studied extensivelyas possible alternatives to LiCoO2[1 4 ]. Stoichio-metric Li Ni O2is knownto be difficult to synthesizeandits multi-phase reaction during electrochemicalcyclingleads to structural degradation,andlayeredLi MnO2has a significant drawback…  相似文献   

16.
以Li2CO3、NiO、Co2O3、MnO2、LiF和SiO2为原料,采用机械力活化固相法制备了Si4+和F-掺杂的锂离子电池正极材料LiNi1/3Co 1/3Mn1/3O2.通过X射线衍射(XRD)、扫描电镜(SEM)和电化学性能测试等技术研究了LiNi1/3Co1/3Mn1/3O2的结构特征、形貌及电化学性能等.结...  相似文献   

17.
采用共沉淀法掺入少量Zn得到Li(Ni1/3Co1/3Mn1/3)1-xZnxO2材料。通过X射线衍射、光电子能谱(XPS)和电化学测试研究掺杂对其晶体结构、元素价态和电化学行为的影响。结果表明:掺入Zn增大晶格常数;在粉末颗粒表面的Zn含量是颗粒内部的数十倍;掺杂后Co、Mn依然保持+3、+4价,但是Ni由+2、+3混合价态组成;掺入少量Zn阻止电极在4.5V电位下的不可逆氧化反应;掺入Zn有效改善高截止电压下的循环容量保持能力,其作用与改变材料表面状态有关。  相似文献   

18.
LiNi1/3Co1/3Mn1/3O2 was coated with uniform nano-sized AlF3 layer by chemical precipitation method to improve its rate capability. The samples were characterized by X-ray diffractometry (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), charge-discharge cycling, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Uniform coated layer with a thickness of about 3 nm was observed on the surface of LiNi1/3Co1/3Mn1/3O2 particle by TEM. At 0.5C and 2C rates, 1.5% (mass fraction) AlF3-coated LiNi1/3Co1/3Mn1/3O2/Li in 2.8-4.3 V versus Li/Li+ after 80 cycles showed less than 3% of capacity fading, while those of the bare one were 16.5% and 45.9%, respectively. At 5C rate, the capacity retention of the coated sample after 50 cycles maintained 91.4% of the initial discharge capacity, while that of the bare one decreased to 52.6%. EIS result showed that a little change of charge transfer resistance of the coated sample resulting from uniform thin AlF3 layer was proposed as the main reason why its rate capability was improved obviously. CV result further indicated a greater reversibility for the electrode processes and better electrochemical performance of AlF3-coated layer.  相似文献   

19.
1 INTRODUCTIONSpinelLi[Li1/3Ti5/3O4 ]isaveryattractiveelec trodematerialforitsexcellentcyclelifeandpromisingchargingrateinrechargeableenergystoragecells .Duringelectrochemicalreactionsconsistingofelectronandlithiumioninsertionintoorextractionfromit,itslatticeconstantchangesveryslightly ,soitiscon sidereda“zero strain”insertioncompound[13] .Thismaterialwassuccessfullyusedasanodecoupledwithhighpotentialcathodematerials (LiMn2 O4 ,LiCoO2oractivecarbonfiber)toprovideacellorhybridsu perc…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号