首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of iron and manganese (hydr)oxide formation processes on the trace metal adsorption properties of these metal (hydr)oxides and their mixtures was investigated by measuring lead adsorption by iron and manganese (hydr)oxides prepared by a variety of methods. Amorphous iron (hydr)oxide formed by fast precipitation at pH 7.5 exhibited greater Pb adsorption (gamma(max) = 50 mmol of Pb/mol of Fe at pH 6.0) than iron (hydr)oxide formed by slow, diffusion-controlled oxidation of Fe(II) at pH 4.5-7.0 or goethite. Biogenic manganese(III/IV) (hydr)oxide prepared by enzymatic oxidation of Mn(II) by the bacterium Leptothrix discophora SS-1 adsorbed five times more Pb (per mole of Mn) than an abiotic manganese (hydr)oxide prepared by oxidation of Mn(II) with permanganate, and 500-5000 times more Pb than pyrolusite oxides (betaMnO2). X-ray crystallography indicated that biogenic manganese (hydr)oxide and iron (hydr)oxide were predominantly amorphous or poorly crystalline and their X-ray diffraction patterns were not significantly affected by the presence of the other (hydr)oxide during formation. When iron and manganese (hydr)oxides were mixed after formation, or for Mn biologically oxidized with iron(III) (hydr)oxide present, observed Pb adsorption was similar to that expected for the mixture based on Langmuir parameters for the individual (hydr)oxides. These results indicate that interactions in iron/manganese (hydr)oxide mixtures related to the formation process and sequence of formation such as site masking, alterations in specific surface area, or changes in crystalline structure either did not occur or had a negligible effect on Pb adsorption by the mixtures.  相似文献   

2.
The potential for filter-feeding bivalves to accumulate metals from a wide range of food sources is an important consideration when examining trophic transfer of metals up the food chain. The objective of this study was to determine the role of Leptothrix discophora in mediating metal uptake in the filter-feeding bivalve Mytilus trossulus. The bacterium L. discophora SP-6 was cultured in the absence or presence of Mn, allowing for a naturally formed Mn oxide sheath to develop. Secondary metals (Cd and Pb) were then added to the cultures, allowing for potential Cd and Pb adsorption to the Mn oxide sheath. Resulting bacterial aggregates of known diameter were then fed to the bivalve M. trossulus using a flow-through system. Initial concentrations of both Pb and Cd on the bacterium did not differ significantly in the presence or absence of the Mn oxide; conversely both Pb (F = 7.39, p < 0.0001) and Cd (F= 33.65, p < 0.0001) were found at lower concentrations in the mussel tissue when the Mn oxide was present. To determine whether these differences in metal uptake could be attributed to sorting by the mussel based on food quality, nutritional analysis was performed. Bacterial food matrixes containing Mn oxides were found to have significantly lower levels of carbon (F = 256, p < 0.0001). Particle clearance rates for the various food matrixes were positively correlated with organic content (R2 = 0.852, p > 0.008). The results of our study suggest that metal uptake in M. trossulus was significantly decreased for Cd with a similar trend for Pb when the SP-6 sheath contained Mn oxides. The mechanism mediating this differential uptake is best explained by food quality, in that a higher quality food source enhanced metal uptake due to an increased clearance rate of organic-rich particles by M. trossulus.  相似文献   

3.
Surface coatings developed in different natural waters were used to study the role of the composition of surface coatings in controlling Cd adsorption in aquatic environments. To investigate the adsorption property of each component, the method of extraction techniques followed by Cd adsorption and statistical analysis were employed. Hydroxylamine hydrochloride was used to remove Mn oxides selectively, sodium dithionite was used to remove Mn and Fe oxides, and oxalic acid was used to remove most metal oxides and part of the organic material. Adsorption of Cd to surface coatings was measured before and after extraction under controlled laboratory conditions. The observed Cd adsorptions to unextracted and extracted surface coatings were analyzed using nonlinear least-squares fitting to estimate the adsorption property of each surface coating constituent. In different waters, the relative contribution to Cd adsorption of each component was different, but in all the waters studied, ferromanganese oxides contributed most with lesser roles indicated for organic phase and Al oxides. The Cd adsorption ability of manganese oxides was significantly higher than that of the other components.  相似文献   

4.
Distinct layers with accumulated iron and manganese oxyhydroxides are found in the recent sediments of Lake Baikal (Siberia). In the South and Central Basins, these concretions accumulate close to the sediment-water interface. In northern Lake Baikal and the area of Academician Ridge, however, massive Fe/Mn crusts are formed within several thousand years at redox fronts 10 to 15 cm below the sediment surface. In some places, precipitated iron and manganese oxyhydroxides are spatially separated. The patterns are a result of secondary iron and manganese oxide precipitation. This natural long-term experiment allows the analysis of competitive adsorption and coprecipitation of trace elements with iron and manganese oxides in sediments. Background concentrations in the sediment of oxoanions (P, As, Sb, Mo); of trace metals (Cr, V, Cu, Zn, Cd, Pb); and of Mg, Ca, Sr, La, Ce, Pr, Nd, and Sm were analyzed by inductively coupled plasma mass spectrometry. Despite the differences in catchment geology of the many tributaries, they are remarkably uniform in sediment cores from different basins of Lake Baikal. Enrichment factors of P and As within Fe crusts revealed concentrations up to 14 and 58 times higher than the background, respectively. No enrichment of P and As was found in the Mn layers. By contrast, Mo accumulated exclusively in the Mn layer with up to 35-fold enrichment. Sb was only slightly enriched in both the Fe and the Mn layers. Among the trace metals studied, only Cd was found at elevated concentrations with a preference for the Mn layer. Ca and Sr were correlated with both Fe and Mn accumulations. The study quantifies the well-known specific adsorption and coprecipitation of P and As at authigenic iron oxides and of Mo on manganese oxides. In addition, the enrichment of Cd at manganese oxides in contrast to the conservative behavior of Zn and Pb reveals highly selective accumulation processes.  相似文献   

5.
Leptothrix discophora SP-6, a type of manganese(Mn)-oxidizing bacteria, has been known to accumulate Mn oxides from the aqueous environment and thus play a key role in microbiologically influenced corrosion by increasing the electrochemical potential of steel and other metals. Similarly, this bacterium was found to modify the surface of glassy carbon in aqueous solution and increase its potential (i.e., ennoblement). In the latter case, biomineralized Mn oxides can be used as cathodic reactants for a new generation of microbial fuel cells featuring a biocathode. In this preliminary study, factors affecting the biofilm formation and biomineralization processes were examined. The inflow of air into the culture medium was found essential to sustain the ennoblement of substrate electrodes. The OCP and FESEM/EDS data indicated that a smoother initial substrate surface generally led to better ennoblement. Polarizing the carbon electrode at +500 mV(SCE) for 15 min was found to facilitate the ennoblement on carbon electrodes, and so did coating it with a poly(L-lysine) layer. Independent of substrate material, initial surface roughness, and pretreatment, there were three parameters in the EIS equivalent circuit that correlated well with the OCP indicating the level of ennoblement by L. discophora SP-6, i.e., electrolyte resistance, double-layer capacitance, and low-frequencies capacitance. These fascinating findings merit further investigation as they may shed light on the fundamental bacteria/substrate interactions and help advance the knowledge base needed forthe engineering applications.  相似文献   

6.
重金属污染由于缺乏有效的治理方法而对公众健康有严重威胁,为了开发吸附重金属离子的生物新材料,本文以向日葵盘为原料提取天然的低酯化果胶LAHP,并研究LAHP对水溶液中Pb2+的吸附性能、优化LAHP吸附Pb2+的条件。采用草酸溶液80 oC提取、乙醇沉淀的方法获得LAHP,产率为14.68%±0.76%。质量分析显示LAHP符合国家质量标准对食品添加剂果胶的要求,结构分析说明LAHP主要由半乳糖醛酸(GalA,86.34%)组成,甲酯化度为23.93%±1.57%,分子量为257 kDa,是天然的低酯化果胶。LAHP对Pb2+的吸附能力受果胶用量、溶液pH、吸附温度和干扰离子等因素的影响,优化确定了LAHP吸附Pb2+的最佳条件:果胶添加量为30 mg/L(Pb2+浓度为11.0 mg/L)、溶液的pH=8.0、处理温度30 ℃。LAHP对Pb2+的最大吸附量为44.57±2.50 mg/g,二价金属离子会在一定程度上影响LAHP对Pb2+的吸附能力。因此,从向日葵盘中提取的低酯果胶是一种良好的天然重金属吸附剂,具有广阔的应用前景。  相似文献   

7.
In batch culture experiments we examined oxidation of As(III) and adsorption of As(III/V) by biogenic manganese oxide formed by a manganese oxide-depositing fungus, strain KR21-2. We expected to gain insight into the applicability of Mn-depositing microorganisms for biological treatment of As-contaminated waters. In cultures containing Mn2+ and As(V), the solid Mn phase was rich in bound Mn2+ (molar ratio, approximately 30%) and showed a transiently high accumulation of As(V) during the early stage of manganese oxide formation. As manganese oxide formation progressed, a large proportion of adsorbed As(V) was subsequently released. The high proportion of bound Mn2+ may suppress a charge repulsion between As(V) and the manganese oxide surface, which has structural negative charges, promoting complex formation. In cultures containing Mn2+ and As(III), As(III) started to be oxidized to As(V) after manganese oxide formation was mostly completed. In suspensions of the biogenic manganese oxides with dissolved Mn2+, As(III) oxidation rates decreased with increasing dissolved Mn2+. These results indicate that biogenic manganese oxide with a high proportion of bound Mn2+ oxidizes As(III) less effectively than with a low proportion of bound Mn2+. Coexisting Zn2+, Ni2+, and Co2+ also showed similar effects to different extents. The present study demonstrates characteristic features of oxidation and adsorption of As by biogenic manganese oxides and suggests possibilities of developing a microbial treatment system for water contaminated with As that is suited to the actual situation of contamination.  相似文献   

8.
This paper examines the adsorption of Pb(II) and a natural organic macromolecular compound (humic acid, HA) on polyacrylamide (PAAM) -grafted multiwalled carbon nanotubes (denoted as MWCNTs/PAAM), prepared by an N(2)-plasma-induced grafting technique. The mutual effects of HA/Pb(II) on Pb(II) and HA adsorption on MWCNTs/PAAM, as well as the effects of pH, ionic strength, HA/Pb(II) concentrations, and the addition sequences of HA/Pb(II) were investigated. The results indicated that Pb(II) and HA adsorption were strongly dependent on pH and ionic strength. The presence of HA led to a strong increase in Pb(II) adsorption at low pH and a decrease at high pH, whereas the presence of Pb(II) led to an increase in HA adsorption. The adsorbed HA contributed to modification of adsorbent surface properties and partial complexation of Pb(II) with the adsorbed HA. Different effects of HA/Pb(II) concentrations and addition sequences on Pb(II) and HA adsorption were observed, indicating different adsorption mechanisms. After adsorption of HA on MWCNTs/PAAM, the adsorption capacity for Pb(II) was enhanced at pH 5.0; the adsorption capacity for HA was also enhanced after Pb(II) adsorption on MWCNTs/PAAM. These results are important for estimating and optimizing the removal of metal ions and organic substances by use of MWCNT/PAAM composites.  相似文献   

9.
In this research, traditional macroscopic studies were complemented with XAS analyses to elucidate the mechanisms controlling Pb(II) sorption onto ferrihydrite as a function of pH, ionic strength, and adsorbate concentrations. Analyses of XANES and XAFS studies demonstrate that Pb(II) ions predominantly sorb onto ferrihydrite via inner-sphere complexation, not retaining their primary hydration shell upon sorption. At higher pH values (pH > or = 5.0), edge-sharing bidentate complexes are mainly formed on the oxide surface with two Fe atoms located at approximately 3.34 A. In contrast, XAS studies on Pb(II) sorption onto ferrihydrite, at pH 4.5, reveal two distinct Pb-Fe bond average radial distances of 3.34 and 3.89 A, suggestive of a mixture of monodentate and bidentate sorption complexes present at the oxide surface. Interestingly, at constant pH, the configuration of the sorption complex is independent of the adsorbate concentration. Hence, Pb(II) sorption to a highly disordered adsorbent such as ferrihydrite can be described by one average type of mechanism. Overall, this information will aid scientists and engineers in improving the current models that predict and manage the fate of toxic metals, such as Pb(II), in the aquatic and soil environments.  相似文献   

10.
Studies have examined partitioning of trace metals onto natural particles to better understand the fate and transport of trace metals in the environment, but few studies have compared model predictions with field results. We evaluate the application of an empirical modeling approach, using surface complexation parameters available in the literature, to complex natural systems. In this work, the equilibrium speciation computer program PHREEQC was used along with the diffuse double-layer surface complexation model to simulate metal removal onto natural oxide particles formed during the mixing of acid rock drainage with ambient surface water. End-member solutions sampled in the Coeur d'Alene (CdA) Mining District in September 1999 from the Bunker Hill Mine and the South Fork Coeur d'Alene (SFCdA) River were filtered and mixed in several ratios. Solution chemistry was determined for end-members and mixed solutions, and X-ray diffraction (XRD) was used to determine the mineralogy of precipitate phases. Predicted amounts of Fe precipitates were in good agreement with measured values for particulate Fe. Surface area and reactive site characteristics were used along with surface complexation constants for ferrihydrite (Dzombak, D. A.; Morel, F. M. M. Surface Complexation Modeling: Hydrous Ferric Oxide; John Wiley & Sons: New York, 1990) to predict ion sorption as a function of mixing fraction. Comparisons of model predictions with field results indicate that Pb and Cu sorption are predicted well by the model, while As, Mo, and Sb sorption are less well-predicted. Additional comparisons with particulate metal and Fe data collected from the CdA Mining District in 1996 and 1997 suggest that sorption on particulate Fe, including amorphous iron oxides and schwertmannite, may be described using universal model parameters.  相似文献   

11.
An Fe-Ce bimetal adsorbent was investigated with X-ray powder diffraction (XRD), transmission electron micrograph (TEM), Fourier transform infrared spectra (FTIR), and X-ray photoelectron spectroscopy (XPS) methods for a better understanding of the effect of surface properties on arsenate (As(V)) adsorption. In the adsorption test, the bimetal oxide adsorbent showed a significantly higher As(V) adsorption capacity than the referenced Ce and Fe oxides (CeO2 and Fe3O4) prepared by the same procedure and some other arsenate adsorbents reported recently. XRD measurement of the adsorbent demonstrated that the phase of magnetite (Fe3O4) disappears gradually with the increasing dosage of Ce4+ ions until reaching a molar ratio of Ce4+ to Fe3+ and Fe2+ of 0.08:0.2:0.1 (Fe-CeO8 refers to the adsorbent prepared at this ratio), and the phase of CeO2 begins to appear following a further increase of the Ce dose. Combined with the results of TEM observation, it was assumed that a solid solution of Fe-Ce is formed following the disappearance of the magnetite phase. Occurrence of a characteristic surface hydroxyl group (MOH, metal surface hydroxyl, 1126 cm(-1)), which showed the highest band intensity in the solid solution state, was confirmed on the bimetal oxide adsorbent by FTIR. Quantificational calculation from the XPS narrow scan results of O(1s) spectra also indicated that the formation of the bimetal Fe-CeO8 was composed of more hydroxyl (30.8%) than was the formation of CeO2 and Fe3O4 (12.6% and 19.6%). The results of adsorption tests on Fe-CeO8 at differentAs(V) concentrations indicated that both the integral area of the As-O band at 836 cm(-1) and the As(V) adsorption capacity increased almost linearly with the decrease of the integral area of M-OH bands at 1126 cm(-1), proving that the adsorption of As(V) by Fe-CeO8 is mainly realized through the mechanism of quantitative ligand exchange. The atomic ratio of Fe on Fe-CeOB decreased from 20.1% to 7.7% with the increase of the As atom ratio from 0 to 16% after As(V) adsorption, suggesting that As(V) adsorption might be realized through the replacement of the M-OH group of Fe (Fe-OH) with arsenate. The well splitting of three v3 bands at As-O band (836 cm(-1)) of FTIR and the hydroxyl ratio (1.7) of Fe-CeO8 calculated from the XPS results suggested that the diprotonated monodentate complex (SOAsO(OH)2) is possibly dominant on the surface of Fe-CeO8.  相似文献   

12.
Individual and competitive adsorption of arsenate and phosphate were studied on a high-surface-area Fe/Mn-(hydr)oxide sorbent with surface and bulk properties similar to those of two-line ferrihydrite. It has maximum adsorption densities of 0.42 micromol As m(-2) at neutral pH and 1.24 micromol As m(-2) at pH 3. A surface complexation model (SCM) that used the diffuse double layer model was developed that could simulate single and binary sorbate adsorption over pH 4-9. The predominant adsorbed arsenate and phosphate species were modeled as bidentate binuclear surface complexes at low pH and as monodentate complexes at high pH. The model initially overpredicted the inhibition of arsenate adsorption by the presence of phosphate. The overprediction was resolved by separating surface sites into two types: ones to which both arsenate and phosphate bind and a smaller number to which only phosphate binds. The modified model predicted the competitive adsorption of arsenate and phosphate over pH 4-9 at total As concentrations of 6.67 and 80.1 microM and a total P concentration of 129 and 323 microM. The model may be used to predict arsenic adsorption to the sorbent for a given water source based on solution chemistry.  相似文献   

13.
We have investigated the cycling of naturally occurring 210Po in waters from seasonally anoxic Pond B (South Carolina) and permanently anoxic Jellyfish Lake (Palau Islands, western Pacific Ocean). The maximum 210Po activity in Pond B was about 14 mBq L(-1) during summer. This activity was much higher than its parent 210Pb activity, indicating excess 210Po inputs from bottom sediments. The summertime excess 210Po activity was accompanied by increases in Fe and Mn, suggesting 210Po diffusion from bottom sediments under reducing conditions. Activity of 210Po was much lower underwinter oxic conditions, most likely a consequence of efficient coprecipitation with Fe and Mn oxides that occurs with destruction of Pond B stratification. In permanently anoxic Jellyfish Lake, the maximum activity of 210Po was 133 mBq L(-1), among the highest reported from any surface aqueous environment. A box model suggests that the release of only 2% of 210Po, produced from the 210Pb in the bottom sediments, would account for the observed excess. Our results suggest that 210Po can be naturally enriched in anoxic environments to a high level, perhaps in concert with the Fe and Mn redox cycles.  相似文献   

14.
The variable removal from solution of sulfate, orthophosphate, fluoride, five simple organic acids, and natural organic matterfromtwo sources by adsorption on aluminum hydroxide was examined to assess their potential influence on coagulation during drinking water treatment. Measurements of electrophoretic mobility were conducted with adsorption studies to provide means of evaluating the impact of the adsorption of these anions on the removal of particulate material during coagulation at water treatment facilities. The three inorganic ions exhibited widely different trends in terms of removal from solution and effect on the surface charge of the aluminum hydroxide. Phosphate was nearly completely removed from solution across a wide pH range and was observed to lower surface charge and shift the isoelectric point. Sulfate was removed to a lesser extent than phosphate, lowered the surface charge on the precipitate, but did not shiftthe isoelectric point. Fluoride was well-removed through adsorption but exhibited no influence on the charge of the hydrous aluminum oxide. The organic acids similarly displayed varying abilities to be removed through adsorption and different influences on surface charge. The results indicate the importance of the number and location of functional groups and their acid/ base properties. The ability to strongly influence surface charge illustrates the impact that adsorption of these anions can have on particle stability.  相似文献   

15.
In this study, the reactivity of lead (Pb(II)) on naturally occurring Mn(III,IV) (oxyhydr)oxide minerals was evaluated using kinetic, thermodynamic, and spectroscopic investigations. Aqueous Pb(II) was more strongly adsorbed to birnessite (delta-MnO1.7) than to manganite (gamma-MnOOH) under all experimental conditions. The isoteric heat of Pb adsorption (delta HT) or birnessite was 94 kJ mol-1 at a surface loading of 1.1 mmol g-1, and decreased with increasing adsorption density. This indicated that adsorption was an endothermic process and that birnessite possessed heterogeneous sites of reactivity for Pb. X-ray absorption fine structure (XAFS) spectra revealed that Pb was adsorbed as inner-sphere complexes on both birnessite and manganite with no evidence to suggest oxidation as an operative sorption mechanism. Lead appeared to coordinate to vacancy sites in the birnessite layer structure with concurrent release of Mn to solution, which resulted in a greater number of second shell Mn scatterers in Pb-birnessite when compared to Pb-manganite samples. The difference in Pb coordination apparently explained the contrasting desorption behavior between the two Mn minerals. These results have significant implications for Pb partitioning in soil environments containing solid-phase Mn(III,IV) (oxyhydr)oxides.  相似文献   

16.
Effects of phosphate on uranium(VI) adsorption to goethite-coated sand   总被引:2,自引:0,他引:2  
U(VI)-phosphate interactions are important in governing the subsurface mobility of U(VI) in both natural and contaminated environments. We studied U(VI) adsorption on goethite-coated sand (to mimic natural Fe-coated subsurface materials) as a function of pH in systems closed to the atmosphere, in both the presence and the absence of phosphate. Our results indicate that phosphate strongly affects U(VI) adsorption. The effect of phosphate on U(VI) adsorption was dependent on solution pH. At low pH, the adsorption of U(VI) increased in the presence of phosphate, and higher phosphate concentration caused a larger extent of increase in U(VI) adsorption. Phosphate was strongly bound by the goethite surface in the low pH range, and the increased adsorption of U(VI) at low pH was attributed to the formation of ternary surface complexes involving both U(VI) and phosphate. In the high pH range, the adsorption of U(VI) decreased in the presence of phosphate at low total Fe concentration, and higher phosphate concentration caused a larger extent of decrease in U(VI) adsorption. This decrease in U(VI) adsorption was attributed to the formation of soluble uranium-phosphate complexes. A surface complexation model (SCM) was proposed to describe the effect of phosphate on U(VI) adsorption to goethite. This proposed model was based on previous models that predict U(VI) adsorption to iron oxides in the absence of phosphate and previous models developed to predict phosphate adsorption on goethite. A postulated ternary surface complex of the form of (>FePO4UO2) was included in our model to account for the interactions between U(VI) and phosphate. The model we established can successfully predict U(VI) adsorption in the presence of phosphate under a range of conditions (i.e., pH, total phosphate concentration, and total Fe concentration).  相似文献   

17.
本研究探索了磺化还原氧化石墨烯的制备及其对碱性染料的吸附性能。通过接枝含有芳香自由基的磺酸根到还原氧化石墨烯(rGO)来制备磺化还原氧化石墨烯(S-rGO)纳米片材。通过红外光谱、X射线光电子能谱和扫描电镜对合成的吸附剂磺化还原氧化石墨烯(S-rGO)进行了表征,结果表明磺酸根被成功地接枝到氧化石墨烯上。本研究系统地研究了p H、时间和吸附剂量等对吸附行为的影响。吸附实验结果表明,吸附过程遵从准二级动力学模型和Langmuir模型,表明该吸附由表面反应过程所控制,属于单分子层吸附。吸附解吸实验中碱性橙21、硫黄素T和罗丹明B的吸附率均大于99%,解析率分别达到98.81%、86.63%和94.44%,表明吸附剂S-r GO对碱性染料有很好的吸附解吸性能且可重复使用。使用该材料处理工业废水可防止有害染料污染农产品后在食物链中地不断富集,从而危害人类健康。  相似文献   

18.
Cadmium adsorption on aluminum oxide in the presence of polyacrylic acid   总被引:1,自引:0,他引:1  
Adsorption of metals from aqueous solution onto oxide and other surfaces is known to affect trace metal transport in many natural and engineered systems. It is therefore important to understand whether dissolved metal inputs will be easily bound to particles or will be strongly complexed in solution and transported with the water phase. The effect of poly(acrylic acid) (PAA), representing a model compound for natural organic matter, on the adsorption of Cd(II) onto gamma-Al2O3 was determined using batch adsorption experiments over a pH range from 4 to 10. Initially, interactions among the individual components were evaluated. Cadmium adsorption onto alumina showed a typical S-shaped metal adsorption curve. PAA adsorption onto gamma-Al2O3 decreased with increase in pH. The affinity of PAA for Cd2+ increased strongly with pH. In ternary systems, the presence of PAA resulted in an enhancement of Cd(II) adsorption below pH 6, apparently due to ternary surface complex formation. Above pH 6, a decrease in cadmium adsorption onto gamma-Al2O3 was observed resulting from an increase in the concentration of soluble Cd-PAA complexes. Overall, results indicate that the presence of natural organic matter could have a significant impact on the distribution and mobility of cadmium in the environment. Simple surface complexation modeling was insufficient to describe behavior in the ternary systems due to the complexity of the PAA polymer.  相似文献   

19.
以非活性羊栖菜粉为吸附剂,研究了pH、羊栖菜粉浓度、Pb2+初始浓度、干扰离子强度、温度等环境因子的变化对Pb2+去除率及吸附容量的影响。结果显示,Pb2+初始浓度为10 mg/L 时,羊栖菜粉对Pb2+的吸附在pH为2.0~5.0的范围内有较高的去除率,其中pH为3.0左右时,有最高去除率97.05%;羊栖菜粉对Pb2+的去除率随羊栖菜粉浓度的增大而增大,但吸附容量却随之降低,在Pb2+初始浓度为60 mg/L,羊栖菜粉浓度0.5 g/L的条件下,羊栖菜粉对Pb2+的去除率可达94%以上;溶液中其他阳离子的存在会干扰羊栖菜粉对Pb2+的吸附,其中Ca2+比Na+的干扰性强,Cu2+比Cd2+的干扰性强,溶液中多种离子存在时对吸附的干扰性大于单一离子的干扰性,且吸附容量与干扰离子强度的平方根呈一定的线性关系,其相关系数均在0.95以上;在20~60 ℃范围内,适当升高温度有利于吸附过程的进行。羊栖菜粉可应用于Pb2+的去除,且对其表现出良好的吸附性能。  相似文献   

20.
针对目前酸性染料染色废水中染料和重金属Cr(Ⅵ)引起的严重环境污染问题,以零价铁(Fe0)/氧化石墨烯(GO)复合物作为吸附剂,以分别含有弱酸性蓝AS和Cr(Ⅵ)的水溶液模拟染色废水,探究Fe0与GO的质量比、溶液pH值及染料与Cr(Ⅵ)的初始质量浓度对吸附性能的影响,考察Fe0/GO吸附剂对酸性染料与Cr(Ⅵ)的吸附机制,研究其吸附热力学与动力学。结果表明:Fe0与GO吸附剂在质量比为4∶1时具有最佳吸附效果,弱酸性蓝AS染液初始质量浓度为75 mg/L,温度为30 ℃,pH值为4.0时,12 h后去除率为85.6%,最大吸附量达到85.6 mg/g;Cr(Ⅵ)溶液初始质量浓度为75 mg/L,温度为30 ℃,pH值为3.0时,12 h后去除率为95.8%,最大吸附量达到95.8 mg/g;Fe0/GO对2种污染物的吸附过程均符合Langmuir模型和准二级动力学模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号