首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 424 毫秒
1.
刘兴华  陈雯 《金属矿山》2014,43(5):64-69
为给新疆某低品位细粒磁铁矿的开发利用提供合理的选矿工艺,针对矿石性质的特点,进行了阶段磨矿、阶段弱磁选工艺和阶段磨矿、阶段弱磁选、阳离子反浮选工艺试验。结果表明:①采用3段磨矿、4次弱磁选的阶段磨选工艺流程处理该矿石,在三段磨矿细度为-0.038 mm占95.18%的情况下,可获得铁品位为66.48%、铁回收率为78.79%的铁精矿;采用2阶段磨矿弱磁选、弱磁精矿2阳离子反浮选、反浮选尾矿再磨-弱磁选抛尾后再返回反浮选的流程处理该矿石,在反浮选尾矿再磨细度为-0.038 mm 占96.34%的情况下,可获得铁品位为69.76%、铁回收率为78.51%的铁精矿。②单一弱磁选流程虽然简洁,但弱磁选、阳离子反浮选联合流程在最后一段磨矿量(相对原矿)显著下降22.99个百分点的情况下,最终精矿铁品位却大幅提高3.28个百分点。  相似文献   

2.
辽宁某含铁低品位磷矿石中可回收元素为磷和铁,磷品位2.17%,铁品位11.50%,磷和铁主要以磷灰石和磁铁矿形式存在。试验采用浮选-磁选联合流程,浮选为一粗一扫二精流程,在磨矿细度为-0.074mm72%的条件下,以碳酸钠为pH值调整剂、水玻璃为抑制剂并使用复合捕收剂,获得磷品位为35.25%、磷回收率为93.71%的磷精矿。磷浮选尾矿经磁选和精矿再磨磁选,得到TFe含量66.21%、TFe回收率55.72%的铁精矿。  相似文献   

3.
对某铜品位为0.96%的单一铜矿石,为进一步提高铜矿物的回收率,在原矿含有少量磁性铁矿物时,对磨矿产品增加预先磁选工艺,预先磁选后获得磁选精矿经过磨矿选铁,尾矿浮选选铜试验表明,较直接浮选可获得更高回收率的铜精矿。原矿经磨矿至-0.076 mm占65%,在磁场强度为716.56k A/m时预先磁选后获得磁选精矿经过再磨选铁,预选尾矿和弱磁选尾矿混合后浮选选铜试验,可获得产率为4.53%、铜含量为18.86%,铜回收率为90.87%的铜精矿。相对原矿磨矿直接浮选指标铜精矿产率提高0.03个百分点,铜品位提高0.50个百分点,铜回收率提高3.94个百分点。  相似文献   

4.
河北某难选赤铁矿强磁选—反浮选试验研究   总被引:1,自引:0,他引:1  
采用阶段磨矿—阶段强磁选—强磁选精矿反浮选工艺流程对铁品位不到25%的河北某难选赤铁矿石进行选矿试验,在-0.074mm占96.20%的最终磨矿细度下,取得了精矿产率为25.43%,铁品位为66.27%,铁回收率为68.49%,总尾矿铁品位为10.39%的选别指标。  相似文献   

5.
为了高效、低耗开发利用广西某含硫低品位铝土矿石,采用阶段磨矿与分级浮选相结合的工艺进行了矿石选矿试验。结果表明,矿石在磨矿细度为-0.074 mm占65%的情况下采用1粗2扫3精、中矿顺序返回流程脱硫,脱硫尾矿中的+0.074 mm粒级1次浮选粗粒铝土矿,粗粒铝土矿浮选尾矿再磨至-0.074 mm占96%的情况下与脱硫浮选尾矿中的-0.074 mm粒级合并1粗2扫3精浮选细粒铝土矿,最终获得S品位为40.54%、Al2O3含量为25.12%、Si O2含量为8.54%、S回收率为81.32%的硫精矿,以及Al2O3含量为65.17%、Si O2含量为8.13%、S含量为0.28%、铝硅比为8.01、Al2O3回收率为79.56%的铝土矿精矿。  相似文献   

6.
张韶敏 《现代矿业》2013,29(10):108-109
以承德地区某钒钛磁铁矿选铁尾矿为研究对象,进行了铁、钛的回收试验。结果表明,在磨矿细度为-0.074 mm占55%条件下,经过磁场强度为100 kA/m的一段弱磁选、两段磁选柱精选,可以获得TFe品位为60.33%、回收率为3.70%的铁精矿;选铁尾矿经“一段中磁预富集—中磁精矿再磨—二段中磁预富集”后得到的磁选钛精矿经过1粗2扫3精的浮选闭路试验,可以获得TiO2品位为41.02%、回收率为36.10%的钛精矿。  相似文献   

7.
为了解决柏泉铁矿"先铁后磷"生产工艺存在的流程较复杂、铁尾矿泥化较严重、脱泥作业造成磷流失,以及选磷药剂制度较复杂(需添加调整剂碳酸钠)等问题,进行了"先磷后铁、先浮后磁"工艺试验。结果表明,矿石在一段磨矿细度为-0.074 mm占40%的情况下,以BQ-2为捕收剂、水玻璃为调整剂,经1粗3精2扫闭路浮选流程选磷,获得了P_2O_5品位为31.58%、回收率为77.97%的磷精矿,浮选选磷尾矿经1次弱磁粗选抛尾—粗精矿再磨(-0.045 mm占84%)—2次弱磁精选流程选铁,获得了Fe品位为66.21%、回收率为47.03%的铁精矿。新工艺在取得理想选矿指标的同时,避免了选磷给矿的过磨和泥化问题,省去了磁选尾矿浓缩、脱泥作业,取消了碳酸钠的使用。  相似文献   

8.
针对舞阳赵案庄铁矿伴生P2O5进行了系统的选矿试验研究,采用磨矿-正浮选的工艺,当细度达到-0.074mm占比65%时,此时粗精矿品位和回收率均达到较高水平, 通过一粗一扫三精的选矿流程,磷精矿品位可以达到30.43%,回收率达93.43%,回收选铁尾矿中的磷灰石技术上可行,按目前磷精矿价格,具有综合回收价值。  相似文献   

9.
江西某矽卡岩型白钨矿石WO_3品位为0.26%,白钨矿大部分浸染在石英、萤石、方解石颗粒中,单体解离困难。现场在磨矿细度为-0.074 mm占80%的情况下采用1粗2扫常温浮选,1粗5精2扫加温浮选,中矿顺序返回流程处理,仅能获得WO_3品位为59.31%、WO_3回收率为58.64%的钨精矿。为了提高该矿石的选矿指标,试验以苯甲羟肟酸+油酸钠为白钨矿常温浮选混合捕收剂,进行了阶段磨选工艺条件研究。结果表明,矿石在磨矿细度为-0.074 mm占80%的情况下采用1粗2扫常温浮选,常温浮选精矿再磨细度为-0.074 mm占90%的情况下采用1粗5精2扫加温浮选,最终获得了WO_3品位为62.31%、WO_3回收率为71.62%的钨精矿,钨精矿WO_3品位提高3个百分点,WO_3回收率提高12.98个百分点,精矿指标提高显著。  相似文献   

10.
东鞍山铁矿石铁品位为33.28%;铁主要以赤褐铁矿形式存在,分布率为86.47%,但3.29%的铁以菱铁矿形式存在,会对浮选产生不利影响。现场采用两段连续磨矿—粗细分级—粗粒螺旋溜槽重选、重选中矿再磨后与细粒磁选精矿合并反浮选工艺,存在尾矿品位偏高,重选处理量小,精矿铁回收率低等问题。为此,对东鞍山铁矿厂现场原矿进行了两段阶段磨矿—阶段磁选—磁选精矿再磨后1粗1精3扫、中矿顺序返回闭路反浮选试验,可获得铁品位为65.32%、回收率为75.71%的精矿,尾矿铁品位为13.38%。与现场原工艺流程相比,铁品位提高了0.58个百分点、回收率提高了10.43个百分点,且该工艺流程简单,易于实现工业改造。该试验结果对改善东鞍山贫赤铁矿选别指标有重要的指导意义,并可为国内其他贫赤铁矿的开发利用提供参考。  相似文献   

11.
针对海南儋州某褐铁矿矿石性质,采用阶段磨矿多段分选工艺,进行了强磁选、絮凝浮选、磁化焙烧及弱磁选等选矿试验研究。第一段磨矿细度为-0.074 mm68%的原矿经一次强磁粗扫选,混合精矿进入二次磨矿,-0.074mm占95%的磨矿产品絮凝去泥后进入混合胺反浮选,浮选精矿再磁化焙烧—弱磁选,可得到铁品位60.45%、回收率52.48%的最终精矿。  相似文献   

12.
弓长岭选矿厂铁浮选尾矿,品位高,粒度细,-0.074 mm含量约65%,铁矿物在细粒级-0.019 mm富集明显。根据弓长岭选矿厂铁浮选尾矿的矿石性质,利用微细粒级重选设备-悬振选矿机对该尾矿进行再选试验研究,通过分级分选,细粒级部分一次悬振选别可获得品位64.35%,回收率30.93%的铁精矿,粗粒级通过磨矿后(磨矿细度-0.074 mm 85%)再悬振分选,获得的精矿铁品位为59.93%,回收率9.80%,综合铁精矿品位63.22%,回收率40.73%,综合尾矿铁品位降至12.58%,有效的回收了该尾矿中的铁,为弓长岭选矿厂的铁浮选尾矿回收与再利用提供可选方案,其社会及经济效益显著。   相似文献   

13.
赖伟强 《金属矿山》2017,46(6):94-98
山西某低品位含金镜铁矿铁品位为26.41%、金品位为0.67 g/t。矿石中金主要以自然金形式存在,自然金占总金的88.15%;铁主要存在于赤(褐)铁矿中,赤(褐)铁矿中铁占总铁的68.28%。为回收矿石中有价元素金和铁,进行了优先浮选金,浮选尾矿弱磁选-高梯度强磁选-反浮选回收铁选矿试验。结果表明,在磨矿细度为-0.074 mm占83.78%条件下,以石灰为pH调整剂、水玻璃为分散剂、丁基黄药+丁胺黑药为捕收剂、2#油为起泡剂,经1粗2精2扫浮选,获得了金品位为29.31 g/t、回收率为87.93%的金精矿,选金尾矿经1粗1精1扫弱磁选,获得了铁品位为65.86%、回收率为13.34%的铁精矿1,弱磁选尾矿经1粗1扫高梯度强磁选,强磁选精矿以NaOH为调整剂、改性淀粉为抑制剂、油酸钠为捕收剂,经1粗2精1扫反浮选,获得的铁精矿2铁品位为61.79%、回收率为50.67%,铁精矿1与铁精矿2合并后混合铁精矿铁品位为62.59%、总铁回收率为64.01%。试验结果可以为该矿石有价元素综合回收提供技术依据。  相似文献   

14.
某褐铁矿强磁选-反浮选试验研究   总被引:1,自引:1,他引:0  
根据某褐铁矿的矿石性质,采用一段磨矿、强磁选-反浮选工艺流程,对该矿石进行了选矿试验。试验结果表明,在磨矿细度-0.074 mm占60.0%,一次强磁粗选,强磁精矿再选,强磁尾矿再进行二次扫选,强磁精矿再选尾矿和强磁尾矿再选精矿合并进行反浮选,反浮选尾矿返回强磁尾矿再选的闭路工艺流程,可获得产率52.24%,品位54.04%,回收率67.03%的强磁精矿和产率47.76%,品位29.08%,回收率32.97%的最终尾矿。  相似文献   

15.
针对国外某铁矿石晶体嵌布粒度极细及难磨易选的性质特点,对该矿石进行了阶段磨矿—弱磁选—反浮选得精—中矿再磨—弱磁选工艺流程试验。试验结果表明:当2段磨矿细度为-0.076 mm 90%时,弱磁精选精矿采用反浮选可提前获得铁品位为68.50%左右的铁精矿,反浮选尾矿经再磨—弱磁选后还可获得铁品位为67%以上的铁精矿,获得的最终综合精矿铁品位为68.09%、铁回收率为70.32%。  相似文献   

16.
陕西某磷矿石矿物成分复杂,主要有用矿物有磷灰石、稀土、磁铁矿和长石,长石精矿质量因被氧化铁严重污染而受到影响。针对该矿石的性质特点进行了选矿试验研究,最终原矿采用磨矿—弱磁选选铁—铁尾矿浮选选磷(稀土)—磷尾矿反浮选除杂—长石粗精矿强磁选除杂的联合工艺流程,可获得铁品位TFe 60.10%、铁回收率TFe 16.04%的铁精矿;品位P_2O_5 25.22%、回收率P_2O_5 81.10%的磷精矿;品位K_2O 2.58%、Na2O 5.62%,回收率K_2O 81.04%、Na_2O 83.82%的长石精矿,较好地实现了该非金属矿的综合回收。  相似文献   

17.
为了实现某含磷铁矿中铁和磷的综合回收,对该矿石进行了可选性试验研究,结果表明:磁场强度为79.577 kA/m,在磨矿细度为-0.074 mm 50%条件下进行一次磁选,一磁精矿磨细至-0.074 mm 80%,经两次磁选后可获得品位为64.14%、回收率为58.25%的铁精矿;一磁尾矿经过一粗三精一扫的浮选流程,可获得P_2O_5品位33%以上、产率8%左右、回收率90%以上的磷精矿。  相似文献   

18.
针对酒泉某难选红柱石矿开展了球磨和棒磨的磨矿细度对比试验、脱泥粒度试验和碱性与酸性介质浮选工艺对比试验研究。试验结果表明,该红柱石矿适合棒磨磨矿,较优磨矿细度为-0.074mm占85.19%,较优脱泥粒度为20μm,碱性介质浮选工艺的精矿指标较优。在确定碱性介质浮选工艺基础上,试样经过磨矿-脱泥-磁选-1粗8精1扫的闭路流程试验,获得了Al_2O_3品位为52.94%、红柱石回收率为54.10%、红柱石含量为83.88%的精矿。  相似文献   

19.
山西某石英型磁铁矿石铁品位为30.97%,有害元素硫、磷含量低,主要杂质为Si O2含量达41.78%,可回收的有价元素只有铁。为给该矿石开发利用提供依据,进行了选矿试验。结果表明:矿石经三阶段磨矿弱磁选—磁选精矿阳离子反浮选—浮选尾矿弱磁选流程处理,可获得精矿铁品位66.47%、回收率84.27%的选别指标。  相似文献   

20.
青海某微细粒嵌布磁铁矿选矿试验研究   总被引:3,自引:1,他引:2  
刘金长 《金属矿山》2009,39(6):52-55
为开发利用青海某微细粒嵌布磁铁矿,对其进行了选矿试验研究。试验结果表明:采用单一磁选工艺,即使将矿石细磨至-500目95%,也不能使精矿铁品位达到60%以上。而采用磁选-反浮选联合工艺,在最终磨矿细度为-400目80%时,可获得精矿品位为60.11%,铁回收率为60.20%的选别指标;在最终磨矿细度为-400目95%时,可获得精矿铁品位为67.42%,铁回收率为56.92%的选别指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号