首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
王丽娜  杨凯  刘皓  惠东  张慧卿 《电源技术》2012,36(12):1780-1782
锂离子电池尤其是大容量锂离子电池在放电过程中会产生大量热量,如果不及时进行散热处理会严重影响电池整体的性能,也会产生安全隐患。利用STAR-CCM+软件,以软包装锂离子单体电池为研究对象,建立锂离子电池的传热模型,分析锂离子电池在放电过程中发热量、温度分布等变化规律,并讨论不同对流换热系数对电池温度的影响。  相似文献   

2.
分析了锂离子电池放电过程中的温度特性及其释热机理,利用充放电测试仪对其在不同倍率放电过程中电池表面温度的变化进行了研究。通过测试电池内阻及开路电压温度系数,分析了电池内部温度受不可逆热及可逆热的影响,建立了基于可变产热速率的电热耦合模型,并在实验中验证了模型的有效性。在此基础上,给出了电池内部温度的多项式函数估算方法,通过与仿真模型计算结果对比,该方法能较好地满足要求,为电池管理系统在线估计电池内部温度奠定了基础。  相似文献   

3.
针对电动汽车用锂离子动力电池热特性,以3.2 Ah锂离子动力电池为研究对象,建立了锂离子动力电池的热模型。分别对锂离子单体电池在不同放电倍率、不同环境温度下的热特性进行了仿真和实验。结果表明,锂离子电池温升呈现非线性特征,在放电末期温升速率明显增大;锂离子电池的温升和温升速率随着放电倍率的增大而增大;仿真温度和实验温度变化趋势基本一致,说明所建立的数学模型能够较准确地描述锂离子单体电池放电过程热行为。进行锂离子单体电池热特性仿真和分析,可以为热管理系统设计提供依据。  相似文献   

4.
采用电化学-量热法对磷酸铁锂电池在30℃不同倍率下充放电过程中的电参数、热流进行精确测量,研究其热性能.结果表明:电池0.2 C充电和放电初始阶段的热流缓慢增大,而0.5 C和1C充放电初始阶段的热流快速增大;电池充电和放电过程中的热流、产热量随着充放电倍率的升高而增大.根据电池0.2 C,0.5 C,1C充放电过程中的电流、热流和时间数据计算得到电池充放电过程的产热量、电极反应物质的量,从而计算出电池0.2 C充电和放电过程电极反应的△rSm分别为-7.074和7.266 J/mol·K.  相似文献   

5.
热光伏系统是将燃烧产生的热能转变为辐射能并通过光伏电池转变为电能的系统,为提高能量的利用效率,可使用回热器进行尾气热量的回收.通过FLUENT仿真软件,对回热器内部对流与导热的模拟,得出仿真结果,比较和分析两种回热器的烟气和空气出口温度、有效度的变化.仿真结果表明:与实验结果相比,仿真数据比较真实可靠;Ⅱ型回热器大大提...  相似文献   

6.
锂离子电池温度变化热模拟研究   总被引:1,自引:0,他引:1  
利用锂离子电池热模型对环境温度,热交换系数,电池大小以及电池荷电状态对电池温度变化的影响进行了模拟计算研究;结果表明:环境温度越高,电池热交换系数越小,电池越大,荷电状态越高,电池发生热失控的温度越低,概率越大。同时还模拟了绝热条件下锂离子电池的自放热过程。  相似文献   

7.
为探索纯电动汽车用锂离子电池在放电过程中的瞬态热特性,通过试验测试得到不同温度下的内阻和不同放电倍率下的温升曲线,计算出不同放电倍率下的瞬时生热率;根据0.5C放电倍率下的瞬时生热率和内阻生热率,求出熵热(可逆反应热)系数变化曲线,分析锂离子电池熵热特性对瞬态生热特性的影响。分析结果表明:锂离子电池的瞬态热特性主要受电池内阻热和熵热(可逆反应热)的瞬态特性影响;熵热是影响电池放电过程中温度波动的主要因素,在放电中期会出现由相变反应引起的吸热现象;在小倍率放电过程中,熵热对电池温度场的影响大于内阻热,而在大倍率中则相反。通过分析,可以为电池瞬态生热模型的建立与完善提供依据。  相似文献   

8.
李小爽 《电源技术》2014,(4):636-639
为了更好地掌握锂离子电池放电时电池内部温度场的分布,对电池放电时产生的热量进行管理,建立了锂离子电池放电时的数学物理模型。利用热分析软件Ansys,以ICR65/400型锂离子电池为例,建立了电池的二维热模型,对电池放电时的温度场进行了仿真分析。模拟了电池内部不同热生成率及电池与外界环境不同换热方式时,电池内部温度场及最高温度的分布,并分析了电池内部热生成率及辐射换热对电池内部温度场分布的影响。结果显示,电池内部最高温度及温度场的分布与电池热生成率、电池换热方式有很大关系。在自然对流换热方式时,辐射换热散发的热量占全部热量的5.6%~17.9%。而在强制对流换热时,辐射换热散发的热量几乎可以忽略不计。  相似文献   

9.
动力锂离子电池放电过程中的热安全性问题是电动汽车必须解决的关键问题。通过实验得到了单体电池的内阻随SOC的关系曲线和正负极耳内阻,计算了电池沿各个方向的导热系数和放电过程中的热生成速率,建立三维电池热模型,得出电池的热分布。由1 C放电1 h后电池的热分布来分析电池的热行为,同时验证了模拟结果的准确性,并模拟了不同表面对流传热系数条件下对电池内部散热的影响。结果显示提高电池表面对流传热系数可以提高电池散热能力。  相似文献   

10.
时玮  韩甜  赵杨梅  张雪楠 《电源学报》2023,21(4):138-147
软包锂离子电池由许多电池单元叠压形成,其中电池单元的电和热行为对电池的整体安全性有很大的影响。为了研究电池单元与单体之间的关系,采用多孔电极理论建立了大容量软包锂电池的分层多维模型,并考虑了瞬态温度变化与电化学反应间的相互作用关系。利用该分层模型研究不同温度下电池放电过程中的电化学和热特性,得到更为真实的电池温度场分布。此外,本文介绍了表征电池单体内不同电池单元荷电状态分布的均匀指数。仿真表明,电池单体内的温度梯度差异加剧了不同电池单元间的过电位不一致和电流密度不一致程度,有利于进一步研究单体电池的衰退演化轨迹。  相似文献   

11.
电动车辆用锂离子电池热特性研究   总被引:2,自引:2,他引:0       下载免费PDF全文
电动车辆的性能和成本很大程度上取决于动力电池组的性能和使用寿命,而电池组的性能和使用寿命又受到电池生热的影响。为了研究电池在充放电过程中的生热特性,以35 A·h,3.7 V方形锰酸锂电池为研究对象,对常温下充放电生热特性和低温放电的生热特性进行研究。研究结果表明:随着放电电流增大,电池温度快速提高,且低温环境下利用电池放电生热可改善电池性能,这些将为后续动力电池组热管理系统研究提供参考。  相似文献   

12.
碱性蓄电池的热效应   总被引:1,自引:0,他引:1  
Cd-Ni和MH-Ni电池,尤其是在组合使用时,其充,放电过程中的热效应是电池设计中不可忽视的问题,详细讨论了各种电极的热力学性质以及Cd-Ni,MH-Ni电池在充放电过程中各阶段热量的产生情况,并对电池的散热情况进行了分析。  相似文献   

13.
为提高户外基站备用电池组的工作性能、延长使用寿命,需要进行冷却和保温。将半导体制冷(TEC)与相变材料(PCM)保温相结合,对基站用48 V铅酸电池组进行热管理。模拟分析TEC的布置、制冷功率和环境温度对冷却保温效果的影响。TEC设置在电池组前后两侧、制冷功率为170 W时,可降低电池的温度、提高冷却阶段电池组温度场的一致性、延长保温时间。电池组经过连续的冷却保温过程,仍处于最佳工作温度范围,电池充放电时的最高温度可得到抑制。  相似文献   

14.
随着电动汽车能量密度的增加以及充放电功率水平的提高,动力电池热问题日益突出,电池热管理系统设计显得尤为重要。从动力电池组应用场景出发,建立了液冷式电池组有限元模型并仿真分析了4种导热硅胶形状对电池组热性能的影响。研究发现,随着导热硅胶与电池组接触面积的减少,电池组温度有所上升,但温差较小。相比于常规设计方案,改短设计方案在电池组温度略微上升的条件下温度均匀性改善明显,可以为电池热管理系统设计提供参考。  相似文献   

15.
研究了一种利用半导体制冷技术的电池热管理系统。首先分析了电池的生热特性及传播规律,指出电池需要工作在合理的工作范围内,然后建立电池的热效应模型和半导体制冷模型,并对单体电池温度场进行了仿真和实验,实验验证了模型的正确性。根据实验结果对模型进行了校正,使模型更符合实际情况。最后对电池组半导体制冷热管理系统进行了仿真,结果表明半导体制冷片对单体温度场和电池组温度场都能够进行有效的调节,使电池工作在合适的温度范围内。  相似文献   

16.
针对动力电池在使用过程中所遇到的最危险的汽车事故(汽车碰撞)进行了模拟,即模拟了电池的内部短路,以便获得在汽车碰撞过程中,影响动力锂离子电池热稳性的主要因素.实验结果表明,电池荷电状态、充电电压(或开路电压、放电电压)越高,电池的热稳定性越差;环境温度越高,电池的热稳定性越差;电池的容量越高,电池的热稳定性越差;电池长...  相似文献   

17.
胡斯航  王世杰  刘洋  张英 《电池》2022,52(1):96-100
针对锂离子电池在循环过程中可能出现的燃烧、爆炸等安全问题,在概述电池热失控滥用工况及诱发机制的基础上,总结电池在宽温域内可能出现的性能衰退、失效形式和热失控风险,并提出电池在低温、正常温度和高温等环境下工作的保障措施,以促进锂离子电池安全发展.  相似文献   

18.
当前锂离子电池热行为解析模型与仿真模型在储能应用中面临效率或精度挑战。提出一种计及动态非均匀热特性的软包锂电池热分析方法,为储能系统提供电池状态在线评估工具。首先,构建热路模型和解析偏微分方程组,以捕捉充放电过程中电池动态非均匀热特性。其次,建立迭代机制确定求解参数,发展一种兼顾精度和效率的求解算法。将热解析模型和算法应用于商用储能锂电池温度评估。多种充放电工况下的实验结果表明,所提方法具有毫秒级计算成本和小于3%的温度误差,参数标定、迭代机制增强了该方法的工程适用性。该方法对储能电池管理系统展现出良好的应用潜力。  相似文献   

19.
首先对电池的产热方式进行了分析,然后根据相变问题求解焓法模型以及相关热传导理论,建立了基于相变材料的方形单体电池散热三维热模型。在此模型基础上结合方形电池表面的外形结构,分析了不同相变材料结合方式,不同相变材料用量以及不同表面换热系数对电池工作温度的影响。研究表明:在电池四周包裹相变材料比只在两侧结合的方式具有更好的降温能力,但是两侧结合具有更小的温差;相变材料厚度3 mm或对流换热系数达到21 W/(m~2·K)时,可以使电池的工作温度始终低于50℃,但是继续增大数值取得的效果不明显。  相似文献   

20.
The secondary batteries for an electric vehicle (EV) generate much heat during rapid charge and discharge cycles above the rated condition, when the EV starts quickly consuming the battery power and stops suddenly recovering the inertia energy. During rapid charge and discharge cycles, the cell temperature rises significantly and may exceed the allowable temperature. We calculated the temperature rise of a small lithium‐ion secondary battery during rapid charge and discharge cycles using our battery thermal behavior model, and confirmed its validity during discharge cycle at current smaller than the discharge rate of 1C. The heat source factors were measured by the methods described in our previous study, because the present batteries have been improved in their performance and have low overpotential resistance. The battery heat capacity was measured by a twin‐type heat conduction calorimeter, and determined to be a linear function of temperature. Further, the heat transfer coefficient was measured again precisely by the method described in our previous study, and was arranged as a function of cell and ambient temperatures. The calculated temperature by our battery thermal behavior model using these measured data agrees well with the cell temperature measured by thermocouple. Therefore, we can confirm the validity of this model again during rapid charge and discharge cycles. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 157(3): 17–25, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20249 Copyright © 2006 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号