首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Fly ash acid residue (FAAR), a by‐product of circulating fluidized bed fly ash extracted Al2O3 by acid leaching method, has been posing problems because of its disposal. The major chemical components of FAAR are amorphous SiO2 (66.38 wt %) and unburned carbon (20 wt %). Attempts were made for its application as a reinforcing filler for ethylene propylene diene monomer (EPDM) rubber in this article. Surface modification for FAAR by silane coupling agent (Si69) was carried out. The effect of surface modification and unburned carbon existing in FAAR on the performance of FAAR was characterized by Fourier transform infrared and dispersibility test. The results indicated that surface modification could reduce the hydrophilicity of FAAR and unburned carbon also had positive effect on the dispersion of FAAR particles in kerosene. The effect of partial replacement of carbon black by FAAR on the curing behavior, mechanical properties, and morphological characteristics of EPDM rubber was also studied. It was proved that with partial replacement of carbon black by FAAR, the cure time (t90) and maximum torque (MH) of EPDM composites increased with the content of FAAR. The mechanical properties were significantly improved when 15 wt % of carbon black was replaced by FAAR. SEM micrographs confirmed that surface modification can improve the compatibility between FAAR and rubber matrix. Unburned carbon existing in FAAR was also beneficial to the interface bonding. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
The recycling or reuse of waste rubber by means of blending together with polymeric materials in addition of filler such as hybrid carbon black and silica (CB/Sil) to a polymer system can provides an opportunity to explore alternative product specifications. Therefore, in this work the investigation of recycled rubber blends based on styrene butadiene rubber/recycled acrylonitrile butadiene rubber (SBR/NBRr) blends reinforced with 50/0, 40/10, 30/20, 20/30, 40/10, 0/50 phr of carbon black/silica (CB/Sil) hybrid filler treated with and without silane coupling agent (Si69) were determined. Cure characteristics, tensile properties, and morphological behavior of selected SBR/NBRr blends at a fix 85/15 blend ratio were evaluated. Results showed that, cure time t90, minimum torque (ML), and maximum torque (MH) of CB/Sil hybrid fillers filled SBR/NBRr blends with and without Si69 increased as silica content increased. However, t90 and ML of SBR/NBRr blends with Si69 were lower than without Si69 except for (MH). The optimum scorch time (ts2) of SBR/NBRr blends with and without Si69 was obtained at 30/20 phr of CB/Sil hybrid filler. However, ts2 of SBR/NBRr blends with Si69 were longer than SBR/NBRr blends without Si69. The incorporation of Si69 has improved the tensile properties [(tensile strength, elongation at break (Eb), stress at 100% elongation (M100), and stress at 300% elongation (M300)] of CB/Sil hybrid fillers filled SBR/NBRr blends. These properties were influenced by the degree of crosslinked density as the silica content is increased. Scanning electron microscopy (SEM) of the tensile fracture surfaces indicated that, with the addition of Si69 improved the dispersion of hybrid fillers and NBRr in SBR/NBRr matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
The dynamic properties, including the dynamic mechanical properties, flex fatigue properties, dynamic compression properties, and rolling loss properties, of star‐shaped solution‐polymerized styrene–butadiene rubber (SSBR) and organically modified nanosilica powder/star‐shaped styrene–butadiene rubber cocoagulated rubber (N‐SSBR), both filled with silica/carbon black (CB), were studied. N‐SSBR was characterized by 1H‐NMR, gel permeation chromatography, energy dispersive spectrometry, and transmission electron microscopy. The results show that the silica particles were homogeneously dispersed in the N‐SSBR matrix. In addition, the N‐SSBR/SiO2/CB–rubber compounds' high bound rubber contents implied good filler–polymer interactions. Compared with SSBR filled with silica/CB, the N‐SSBR filled with these fillers exhibited better flex fatigue resistance and a lower Payne effect, internal friction loss, compression permanent set, compression heat buildup, and power loss. The nanocomposites with excellent flex fatigue resistance showed several characteristics of branched, thick, rough, homogeneously distributed cross‐sectional cracks, tortuous flex crack paths, few stress concentration points, and obscure interfaces with the matrix. Accordingly, N‐SSBR would be an ideal matrix for applications in the tread of green tires. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40348.  相似文献   

4.
Silica (SiO2) modified by in situ solid‐phase grafting was used for natural rubber (NR) reinforcement. The physical mechanical properties and Payne effect of natural rubber reinforced by SiO2 and graft‐modified silica (G‐SiO2) were analyzed systematically. The results showed the comprehensive performance of NR/G‐SiO2 was better than that of NR/SiO2. There was a proportional relationship between the filler loading and Payne effect. NR/G‐SiO2 presented weaker Payne effect in comparison with NR/SiO2. A qualitative analysis on the correlation of filler 3D network structure and filler loading was carried out according to the relationship between the bound rubber content and the shear modulus. The Payne effect mechanisms of rubber compounds differed according to the different filler loading. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43891.  相似文献   

5.
The dynamic mechanical properties of rubber vulcanisates filled with cryogenically pulverized polyurethane foam particles, used as a reinforcing filler, were investigated with respect to storage modulus (E′), loss modulus, and the variation of glass transition temperature. Two rubbers were using styrene–butadiene rubber (SBR) and ethylene–propylene copolymer (EPDM). The effects of filler concentration and filler characteristics (such as particle size and moisture content) were also monitored. It was found that the optimum dynamic mechanical properties of the compounds were obtained when introducing the PU particles of 40–50 parts per hundred (pph) rubber in the SBR and 30 pph in the EPDM, the properties being affected by the size of PU particles and moisture content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1129–1139, 1999  相似文献   

6.
Improvement of the properties of rubber nanocomposites is a challenge for the rubber industry because of the need for higher performance materials. Addition of a nanometer‐sized filler such as silicon carbide (SiC) to enhance the mechanical properties of rubber nanocomposites has rarely been attempted. The main problem associated with using SiC nanoparticles as a reinforcing natural rubber (NR) filler compound is poor dispersion of SiC in the NR matrix because of their incompatibility. To solve this problem, rubber nanocomposites were prepared with SiC that had undergone surface modification with azobisisobutyronitrile (AIBN) and used as a filler in blends of epoxidized natural rubber (ENR) and natural rubber. The effect of surface modification and ENR content on the curing characteristics, dynamic mechanical properties, morphology and heat buildup of the blends were investigated. The results showed that modification of SiC with AIBN resulted in successful bonding to the surface of SiC. It was found that modified SiC nanoparticles were well dispersed in the ENR/NR matrix, leading to good filler‐rubber interaction and improved compatibility between the rubber and filler in comparison with unmodified SiC. The mechanical properties and heat buildup when modified SiC was used as filled in ENR/NR blends were improved. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45289.  相似文献   

7.
Abstract

The present work presents a possibility to produce a rubber elastic and electrically conductive polymer material on the basis of dynamic vulcanisates. Thanks to the specific morphology of dynamic vulcanisates and the non-uniform carbon black distribution, carbon black filled dynamic vulcanisates can exhibit a very low percolation threshold of ~4 wt-%. Keeping the carbon black content low, a broad spectrum of resistivity properties can be achieved by variation of material factors like type and content of rubber phase and filler, concentration of cross-linking agent and compatibiliser and technological factors like mixing time respectively. In comparison with thermoplastic elastomers on the basis of block copolymers dynamic vulcanisates show a distinct lower percolation threshold. Up to a carbon black content of ~10 wt-% the mechanical properties of carbon black filled dynamic vulcanisates are not negative influenced essentially. To characterise the development of the carbon black dispersion and distribution processes and the conductivity properties in an internal mixer, the method of online measured electrical conductivity is suited very well for carbon black containing rubber mixtures. It could be shown in pre-investigations that this method promises to be a very useful tool for monitoring the mixing processes of carbon black filled dynamic vulcanisates in continuous mixing processes by means of extruders too.  相似文献   

8.
In the present work, the influences of filler type and content on cure characteristics, mechanical and dynamic mechanical properties, and heat aging resistance of filled styrene butadiene rubber (SBR) compounds cured with a mixed vulcanisation system were assessed. A new mixed curing system was developed to obtain vulcanisates with excellent mechanical properties and heat aging resistance compared to those with a commercial EV cure system. The results show that filler has stronger effect on scorch time, cure time and cure rate index with the EV system than with the mixed curing system. The torque difference of filled SBR compounds depends on the filler content. With mixed vulcanisation, it is easier to control the conditions during moulding when the formulation is altered, particularly with a change in filler content. The mixed vulcanisation gave overall improved mechanical properties, heat build-up and heat aging resistance compared to the EV system, even though reinforcing fillers were used in the SBR compounds.  相似文献   

9.
The effect of the chemical modification of the silica surface by the silane coupling agent (Si69) on both the real and the imaginary parts of the shear compliance (J′, J″) on silica‐filled butyl rubber vulcanizates was investigated in a wide temperature and frequency range, ?70 to 120 °C and 10?4 to 10 Hz, respectively. In addition, the stress‐strain measurements, DSC, and TEM were carried out. Moreover the effect of stress‐strain cyclic deformation up to ten times with maximum deformation 80% of the elongation at break on J′, J″ is also studied. It was found that the filler network recovers after cyclic stress‐strain in a time scale of one year at room temperature.

Transmission electron photographs of the butyl rubber [IIR] vulcanizates: (a) IIR, unfilled, (b) IIR, filled with 20 phr SiO2, (c) IIR,filled with 20 phr SiO2 + 1.6 phr Si69.  相似文献   


10.
Oleylamine (OA) modified silica (SiO2-g-OA) was prepared using γ-(2,3-epoxypropoxy) propytrimethoxysilane (KH560) and OA, silica/natural rubber (NR) and SiO2-g-OA/NR composites were prepared by mechanical blending in an internal mixer, and SiO2-g-OA was characterized by Fourier transform infrared spectroscopy, thermal gravimetric analyzer, and contact angle analyzer. The mechanical properties, abrasion resistance, curing characteristics, Payne effect, and morphology of silica/NR and SiO2-g-OA /NR composites were investigated using universal testing machine, Akron abrasion tester, rubber processing analyzer, and scanning electron microscope, respectively. The results showed that SiO2-g-OA became more hydrophobic and had better compatibility with NR. Moreover, SiO2-g-OA/NR had weaker Payne effect, better vulcanization performance, and more excellent mechanical properties. As the content of filler was more than 30 phr, SiO2-g-OA/NR had lower rolling resistance and higher wet skid resistance. Compared with silica modified by other coupling agents, SiO2-g-OA had the best reinforcement effect on NR.  相似文献   

11.
Silica- and carbon-filled styrene butadiene rubber (SBR) were prepared. The influence of particle type and silane coupling agent on cure characteristics, physical and dynamic mechanical properties of particle-reinforced SBR were investigated. Minimum torque, maximum torque and tensile strength increased with increase of the filler content. The tensile strength and elongation at break were highest for presence of bis-(3-triethoxysilylpropyl) tetrasulfide (TESPT) in silica-filled vulcanizates. The dynamic mechanical properties show that tan δ at temperatures of ?20–0°C of the SiO2/TESPT/SBR vulcanizate was highest of all. Tan δ at temperatures of 50–70°C of the SiO2/TESPT/SBR vulcanizate was lower than carbon-filled SBR.  相似文献   

12.
Natural rubber (NR) composites highly filled with nano‐α‐alumina (nano‐α‐Al2O3) modified in situ by the silane coupling agent bis‐(3‐triethoxysilylpropyl)‐tetrasulfide (Si69) were prepared. The effects of various modification conditions and filler loading on the properties of the nano‐α‐Al2O3/NR composites were investigated. The results indicated that the preparation conditions for optimum mechanical (both static and dynamic) properties and thermal conductivity were as follows: 100 phr of nano‐α‐Al2O3, 6 phr of Si69, heat‐treatment time of 5 min at 150°C. Furthermore, two other types of fillers were also investigated as thermally conductive reinforcing fillers for the NR systems: (1) hybrid fillers composed of 100 phr of nano‐α‐Al2O3 and various amounts of the carbon black (CB) N330 and (2) nano‐γ‐Al2O3, the particles of which are smaller than those of nano‐α‐Al2O3. The hybrid fillers had better mechanical properties and dynamic performance with higher thermal conductivity, which means that it can be expected to endow the rubber products serving under dynamic conditions with much longer service life. The smaller sized nano‐γ‐Al2O3 particles performed better than the larger‐sized nano‐α‐Al2O3 particles in reinforcing NR. However, the composites filled with nano‐γ‐Al2O3 had lower thermal conductivity than those filled with nano‐α‐Al2O3 and badly deteriorated dynamic properties at loadings higher than 50 phr, both indicating that nano‐γ‐Al2O3 is not a good candidate for novel thermally conductive reinforcing filler. POLYM. COMPOS., 37:771–781, 2016. © 2014 Society of Plastics Engineers  相似文献   

13.
A tire thread formulation for heavy‐duty trucks containing SBR/BR rubber blend and varying proportions of silica/clay fillers including a silane‐coupling agent have been investigated. The various mixes were compounded in a Banbury ‘O’ mixer and vulcanized using the EV‐system. Silica/clay (80/0) served as the control mix. The oscillating disc rheometer (ODR) was used in determination of cure characteristics. Substitution of silica (80 phr) with china clay up to 40 phr increased the cure rate of the rubber blend mixes as well as their maximum torque level (Tmax). Tmax was observed to be highest at a filler blend ratio of 40/40 phr. Synergism between silica and clay at this filler blend mixture is suggested to be responsible for the observation. The heat buildup was reduced from 43 to 20°C as the clay content increased. Results also showed that the rubber blend compound containing silica/clay (60/20) filler blend in the stated ratio exhibited the best balance of properties in the critical parameters such as the absolute torque level (69.5 dNm), heat buildup (39°C), and abrasion resistance (0.574 mg.loss/1,000 rev). The rate of depreciation of abrasion resistance of rubber blend compound as the clay content increased was found to be 0.035 mg loss/1,000 rev as silica is substituted with one part of china clay phr. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1024–1028, 2004  相似文献   

14.
The fluorine rubber nanocomposites were prepared by using the silane‐coupling agents treated silica and diatomite, in which 3‐amino propyltriethoxysilane (KH550), 3‐mercapto‐propyl trimethoxysilane (KH590), and bis‐(γ‐triethoxysilylpropyl)‐tetrasulfide (Si69) of the coupling agent were used as the filler modifiers to increase the compatibility between filler and fluorine rubber. The structure and morphology of the composites were investigated by Fourier transform infrared spectroscopy and scanning electron microscopy. The Tg and thermal stability of the composites were investigated by dynamic mechanical analysis and thermogravimetric analysis. The results showed that the best coupling agent was KH550 and 2 phr (parts per hundred rubber). The KH550‐modified compound filler was crosslinked with fluorine rubber, and the compatibility between filler and fluorine rubber was improved and further confirmed to improve the thermal properties of fluorine rubber with the KH550‐modified filler. J. VINYL ADDIT. TECHNOL., 26:55–61, 2020. © 2019 Society of Plastics Engineers  相似文献   

15.
The vulcanization properties, mechanical properties of hydrogenated nitrile rubber (HNBR) filled with carbon black (N550), zinc dimethacrylate (ZDMA), SiO2 independently and two of three kinds of fillers together were investigated, respectively. The filler‐dispersion was characterized by the transmission electron microscopy (TEM) and dynamic mechanical properties. The results showed that HNBR composite filled with SiO2 or ZDMA displayed high tensile strength, elongation at break and compression set. The HNBR composite filled with N550 displayed low compression set, tensile strength and elongation at break. The dispersion of SiO2 in HNBR compound was better than that in HNBR vulcanizates because of SiO2 particles self‐aggregation in vulcanizing processing. ZDMA particles with micron rod‐like and silky shape in HNBR compounds changed into near‐spherical poly‐ZDMA particles with nano size in HNBR vulcanizates by in situ polymerization reaction. The N550 particles morphology exhibited no much change between HNBR compounds and vulcanizates. N550/ZDMA have the most effective reinforcement to HNBR and the appropriate amount of ZDMA is about 25% of total filler amount by weights. The theory prediction for Payne effect (dispersion of the filler) shown by the dynamic properties is identical with actual state observed by TEM. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
通过静电纺丝技术制备了直径为300~500 nm的超细二氧化硅纤维,制备的纤维进一步研磨和超声处理得到二氧化硅短纤维,然后将其填充到胎面胶中,分析了不同取向的二氧化硅纤维对胎面胶物理机械性能与动态力学性能的影响。结果表明:二氧化硅纤维在胎面胶基体中有着良好的分散,可以明显提高复合材料的100%定伸模量。在动态性能上,当纤维取向方向与分子链方向一致时,其60~80oC损耗因子最小。当纤维取向方向与分子链方向垂直时,0~-20oC损耗因子最大。因此该二氧化硅纤维作为一种新型增强填料在胎面胶上有着良好的应用前景。  相似文献   

17.
《Polymer Composites》2017,38(5):918-926
Montmorillonite and silica were used as fillers combined with Si69 as their coupling agent in styrene–butadiene rubber/polybutadiene rubber tread compounds to evaluate their interaction and influences on structure and properties of nanocomposites. Microstructure, filler dispersion, curing properties, and tire performance of the compounded rubber were investigated with the aid of X‐ray diffraction, transmission electron microscopy, rheometer, and dynamic‐mechanical analysis, respectively. The results showed that montmorillonite could react with coupling agent and their reaction rate was higher than silica/Si69. The dispersion and exfoliation was promoted by the existence of silica. Fully exfoliated montmorillonite were formed when the montmorillonite/silica ratio was 14 or lower, and the as‐prepared rubber compounds displayed well‐balanced properties. Additionally, coupling agent also influenced the curing kinetics, dynamic, and mechanical properties of the tread compounds. But the structure was not affected by the usage amount of Si69. POLYM. COMPOS., 38:918–926, 2017. © 2015 Society of Plastics Engineers  相似文献   

18.
The reactivity of the alkoxy group in a silane coupling agent toward inorganic surfaces was investigated, and the structure of a silane-treated layer on the particle surface was analyzed. For this purpose, the various inorganic filler particles, SiO2, Al(OH)3, Mg(OH)2, Al2O3, and CaCO3 were treated with γ-mercaptopropyltrimethoxysilane. A strong interaction between the particle surface and the silane due to the hydrogen bonding and ionic interaction was confirmed except for CaCO3 by electron spectroscopy for chemical analysis (ESCA). The structure of the silane layer on the particle surface was affected significantly by both the amount of added silane and the treatment conditions. Different silane structures, such as monolayer- or network-like, were formed on the particle surface. Their influences on the mechanical properties of filled vulcanized rubber were also investigated. The silane-treated filler particles, except CaCO3, showed ability as a semi-reinforcing filler for vulcanized rubber. However, the structure of the silane-layer on the particle surface hardly affected the mechanical properties.  相似文献   

19.
Graphene oxide (GO) and silicon dioxide (SiO2) nanoparticles have been hybridized for improving the mechanical and dynamic mechanical properties of nitrile rubber (NBR). SiO2 nanoparticles were homogeneously dispersed on the surface and between layers of GO, and the new hybrid nanoparticles formed (GO/SiO2) had better thermal stability than GO. To evaluate the mechanical properties, GO/SiO2/NBR nanocomposites were prepared by solution blending and mechanical solution methods. It was observed that tensile strength increased in a larger grade in GO/SiO2/NBR nanocomposites than that in GO/NBR and SiO2/NBR nanocomposites, while the elongation at break only changes smoothly. Moreover, dynamics measurements also indicated that the elasticity increased after adding GO/SiO2 hybrid nanoparticles in NBR. From morphology's analysis of GO/SiO2/NBR and GO/NBR nanocomposites, it is was conclude that the hybridization of the GO/SiO2 was the determining factor for the reinforcement of the mechanical properties and elasticity of the NBR. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46091.  相似文献   

20.
Material waste from the production of autoclaved aerated concrete, a porous material, should be considered as a valuable byproduct for use as a filler material for the rubber industry. Natural rubber (NR) composites filled with different loading (over the range of 0–60 phr) of autoclaved aerated concrete waste (AACW) as a new eco‐friendly material were produced using two roll mills and then were studied for their cure characteristics, mechanical and aging properties, and morphology, and also compared with commercial fillers, calcium carbonate (CaCO3), and silica (SiO2). In most cases, the cure characteristics and mechanical and aging properties of the SiO2‐filled NR composites were significantly better than those of the AACW‐ and CaCO3‐filled NR composites. However, these properties for AACW‐filled composites appeared to be higher than CaCO3‐filled composites. The reason for this could be due to a larger surface area which is both porous and of an irregular shape of the AACW filler used. Scanning electron microscope images showed that the morphology of the rubber filled with SiO2 was finer and more homogenous compared with the rubber filled with AACW or CaCO3. Overall results revealed that the reinforcement ability of AACW‐filled NR composites was generally better when compared with CaCO3‐filled NR composites; therefore, AACW can be used effectively as a cheaper filler for production of rubber products where end‐use properties of a rubber product is specifically required. POLYM. COMPOS., 36:2030–2041, 2015. © 2014 Society of Plastics Engineer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号