首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
研究了以高炉水淬渣为吸附剂处理含铬(VI)废水的工艺条件。试验结果表明,将废水的pH由0.5调至1,高炉水淬渣粒度为280日(即0.053mm)、用量为0.02g/mL,作用时间为30min,温度为25℃时,铬(VI)的去除率为95.61%,废水中铬(Ⅳ)浓度由7.225mg/L降至0.317mg/L,低于国家污水综合排放标准(GB8978-1996)第一类污染物最高允许排放浓度。  相似文献   

2.
研究了以粉煤灰为吸附剂处理高校含铬(Ⅵ)实验废水的工艺条件.试验表明,铬(VI)的去除率为93.87%,废水中铬(VI)浓度由7.225mg/L降至0.443mg/L,低于国家污水综合排放标准(GB8978-1996)第一类污染物最高允许排放浓度.  相似文献   

3.
采用水淬渣作为吸附剂对含铜电镀清洗废水进行处理,实验结果表明,对于pH为5.02,ρ(Cu2+)为20.06mg/L的含铜电镀清洗废水,常温下,采用6g/L水淬渣,作用t为20min,Cu2+去除率达99%,出水p(Cu2+)小于0.15mg/L,符合国家污水综合排放标准(GB8978-1996)的一级标准,达到以废治...  相似文献   

4.
本文采用离子交换法处理含铬(VI)废水。实验结果表明,离子交换法处理含铬废水的最佳条件为:废水pH为4、交换时间为60min、交换温度为45℃、树脂投加量为0.9g。在此条件下,可使50mL废水中铬(VI)浓度由50mg/L降至0.02mg/L,达到了污水综合排放标准。  相似文献   

5.
《化工设计通讯》2019,(10):233-234
针对武钢利用长江水进行高炉渣水淬而用水量大、成本较高的情况。为了改进高炉渣的水淬效果,提升高炉渣的质量,在对焦化废水进行混凝沉淀以及氧化的基础上,研究处理后的焦化废水用于高炉渣水淬对高炉渣以及周围大气的影响。结果表明:当利用处理后的焦化综合废水进行5次循环水淬后,冷却水中的氰化物浓度稳定在0.006mg/L左右,挥发酚浓度稳定在0.002mg/L左右,硫化物浓度稳定在0.011mg/L左右。水淬后蒸发的水蒸气中的氰化物、挥发酚以及硫化物浓度在1m范围内稳定在0.001mg/L左右。利用处理后的焦化生化废水进行5次循环水淬后,冷却水中氰化物、挥发酚与硫化物浓度分别为0.103,0.021,0.197mg/L,且呈稳定的上升趋势。利用处理后的焦化综合废水进行水淬的高炉渣与用长江水水淬的高炉渣相比,性能没有明显改变。  相似文献   

6.
为了考察高炉水淬渣处理实际电镀废水中重金属离子和COD的可行性,分别研究了吸附剂投加量、pH、吸附时间以及温度等单因素对Cu2+、Zn2+或COD去除率的影响。在单因素实验的基础上,应用 Box-Behnken中心组合方法进行三因素三水平试验,建立二次多项数学模型,并验证该模型的有效性。采用响应曲面法探讨吸附剂投加量、pH、吸附时间3个因子的交互作用及其最佳水平。结果表明:在吸附剂投加量为1.4g、pH为8、吸附时间为120min的最优化条件下,电镀废水中Cu2+、Zn2+和COD去除率达到最大,分别为99.35%、98.46%和53.63%。经对最优条件进行验证,预测值与验证实验平均值接近。吸附后废水中的Cu2+和Zn2+低于GB 21900-2008电镀废水新建企业污染物排放限值要求,而COD没有满足排放要求,所以仅应用高炉水淬渣吸附技术还不足以去除电镀废水中所有有害物质,因此可利用此技术作为辅助工艺,联合其他技术共同去除电镀废水中的重金属离子和有机物,使出水水质达到国家排放标准。  相似文献   

7.
吸附完废水的高炉水淬废渣含有大量的重金属,其中Cd2+超过国家固体废弃物排放最高允许值,属于危险废物.因此,为有效控制高炉水淬废渣中重金属污染,采用不同废渣取代率设计不同配合比的炉渣混凝土,研究取代率对炉渣混凝土工作性能的影响,同时采用美国EPA毒性浸出实验(TCLP)和固化体表面浸出实验对高炉水淬废渣混凝土固化体的浸出毒性进行安全性评定.结果表明,掺加高炉水淬废渣可以使炉渣混凝土流动性变大,后期抗压强度增长显著,完全达到了C30混凝土的要求.高炉水淬废渣混凝土固化体最大浸出毒性满足国家固体废弃物排放标准.此外,固化体早期表面浸出率为10-3数量级,后期表面浸出率仅为10-6数量级,可见固化体的长期抗浸出能力是很强的,废渣中的重金属离子得到有效的束缚和稳定固化,既解决了环境问题,又为高炉水淬渣产业化发展开辟了新的途径.  相似文献   

8.
李晓颖 《广东化工》2012,39(16):133-134
文章对改性粉煤灰处理含铬(VI)废水进行了研究。通过实验考察了改性粉煤灰加入量、吸附时间、吸附温度和废水的pH对废水中铬(VI)去除率的影响。实验结果表明,改性粉煤灰处理含铬(Ⅵ)废水的最佳工艺条件为:改性粉煤灰加入量为1.5g,吸附时间为10min,吸附温度为25℃,废水的pH为6.0。在此条件下可使50mL模拟含铬废水中铬(VI)浓度由10mg/L降到0.47mg/L,铬(VI)去除率达95%以上,达到了国家《污水综合排放标准》。  相似文献   

9.
以特定污泥挂膜的自制厌氧生物滤床系统具有良好的去铬(VI)能力。恒流泵最佳流量为47mL/min,外加碳源使废水COD约140mg/L,铬(VI)的浓度由60mg/L左右降到0.5mg/L以下(一级排放标准),需要4h,而对照组(未加碳源)需要14h。铬(VI)浓度由64.66mg/L提高到75.53mg/L时,对系统负面影响甚微,提高到95.47mg/L时,系统出水达标所需时间延长到7.5h。添加微量金属离子与未添加微量金属离子的情况相比,处理效率提高21.26%。分析试验表明:铬(VI)的去除途径可能是由生物还原作用将六价铬还原为三价铬,形成氢氧化铬沉积于微生物表面。  相似文献   

10.
通过石英砂和水淬渣单层滤料的对比试验,了解水淬渣的过滤性能.并采用水淬渣-石英砂双层滤料不加药直接过滤技术对电厂生活污水二级出水进行深度处理.试验结果表明:在去除浊度方面,水淬渣和石英砂的过滤性能相差不大;在去除COD方面,水淬渣的过滤性能优于石英砂.滤速为7.5 m/h时,水淬渣-石英砂滤料的平均出水浊度<3 NTU、COD<15 mg/L,满足回用标准,出水水质稳定.  相似文献   

11.
含钛高炉水淬渣在高炉煤气净化水处理中的应用   总被引:1,自引:0,他引:1  
介绍了高钛高炉水淬渣比表面积大、吸附力强的特性,在此基础上对高炉煤气净化水系统进行改造,用含钛高炉水淬渣吸附高炉煤气净化水中的悬浮物从而使水得到净化处理,经处理后的水再返回高炉煤气净化系统循环使用,在投入很少资金的情况下,取得很好的经济效益。  相似文献   

12.
采用铁盐改性后的水淬渣对稀土冶炼过程中的氯铵生产废水进行了吸附处理,研究了最佳吸附工艺条件。结果表明,室温下,当利用改性水淬渣在转速为120 r·min-1、处理100 mL氨氮质量浓度为127 mg·L-1的氯铵废水时,优化工艺条件为:改性水淬渣投加量1.0 g、pH为8、振荡吸附1 h,此条件下对氨氮的去除率达到了80.66%。改性水淬渣吸附氨氮的行为符合Temkin等温方程,方程为qe/(mg·g-1)=15.97ln[ρe/(mg·L-1)]-43.01,相关系数为0.929 2。  相似文献   

13.
采用铁盐溶液浸渍的方法对黄磷水淬渣进行改性,以提高其对废水中As (Ⅲ)的去除效率。考察改性过程中铁盐种类、铁盐浓度、熟化温度及熟化时间四个因素对改性黄磷水淬渣吸附砷性能的影响:浸渍铁盐溶液为FeCl3、浓度0.8 mol/L、熟化温度80℃和熟化时间6 h。通过比表面积和孔径测定( BET)、扫描电镜(SEM)和傅里叶红外光谱( FT-IR)对改性前后黄磷水淬渣的表面性能和结构进行表征。在最佳条件下制备的改性黄磷水淬渣比表面积增大、Fe3+和-OH含量升高,对废水中As(Ⅲ)的去除率可达到99.1%。改性后的黄磷水淬渣表面有铁负载,增加了其对废水中As(Ⅲ)的吸附性能。  相似文献   

14.
采用超声波-铁氧体法处理含铬废水,考察了加料比(n Fe2+∶nCr(VI))、pH值、H2O2的投加量、含铬废水的初始质量浓度、超声波辐射时间等因素对Cr(VI)的去除率的影响。根据吸光度来评价去除效果,寻求最佳的工艺条件。当加料比为7.5,pH值为8.0~9.0,H2O2的投加量为15mg/L,超声波辐射时间为30min时,Cr(VI)的去除率在99%以上,且铁氧体的磁性最强。实验结果还表明:含铬废水的初始质量浓度越大,Cr(VI)的去除率也越大,且用此法处理均达到国家排放标准;Cu2+,Zn2+对含铬废水的处理造成干扰;另外,超声波对铁氧体除铬有较强的促进作用。  相似文献   

15.
袁进 《广东化工》2007,34(10):95-98
研究了水淬渣-累托石颗粒吸附剂制备的工艺条件及其对铜冶炼废水中铜离子的去除。实验结果表明:水淬渣与累托石的比例为1︰1,另加入10%的添加剂(工业淀粉)和50%的水,焙烧温度为400℃时,制成的颗粒吸附剂不仅吸附效果最佳,而且其散失率较低。在不需要调节铜冶炼废水pH的条件下,吸附剂用量为0.03 g/mL,作用时间为30 min,温度为25℃,铜的去除率达97.80%,处理后的水符合国家污水综合排放标准(GB8978-1996)一级标准,相对于其它处理方法,具有工艺简单、处理效果好等优势,因而具有良好的应用前景。  相似文献   

16.
混凝-吸附联合处理含铬废水的研究   总被引:1,自引:0,他引:1  
曹福  童佳 《电镀与环保》2012,32(4):46-48
采用新型混凝剂聚磷氯化铝铁(PPAFC)对含铬废水进行混凝处理;再采用铝化改性膨润土对含铬废水进行吸附处理。结果表明:在PPAFC 40mg/L,铝化改性膨润土2.0g/L,室温的条件下,总铬的去除率超过99.8%,出水中总铬的质量浓度达到《电镀污染物排放标准》(GB 21900-2008)要求。  相似文献   

17.
王哲  黄国和  安春江  陈莉荣  刘金亮 《化工进展》2015,34(11):4071-4078
利用等温吸附法考察了高炉水淬渣对Cu2+、Cd2+、Zn2+的单组分吸附和竞争吸附性能。结果表明,单一组分吸附时,金属离子吸附等温线属于“H”形等温线,吸附平衡符合Langmuir吸附等温模型,高炉水淬渣吸附的顺序为Cu2+ >Cd2+ >Zn2+,这与重金属离子电负性、水合离子半径及荷径比等有关。当加入竞争离子后,Cu2+的吸附等温线基本维持原来形状,且仍旧与Langmuir吸附等温模型比较相符,而Cd2+ 和Zn2+的吸附无法与现有等温吸附模型很好地拟合,等温线的形状由于竞争作用也与传统的等温线均不相同,同时各金属离子的吸附量都比单组分的吸附量降低了。吸附动力学过程先是一个快速阶段,然后进入慢速阶段。无论是单组分还是竞争条件下,伪二级动力学方程拟合结果较好,说明高炉水淬渣与Cu2+、Cd2+、Zn2+之间的吸附过程主要是以化学吸附为主。  相似文献   

18.
研究了铁屑-活性炭微电解法处理含铬(Ⅵ)废水的工艺条件及机理.试验结果表明,在未调节废水pH值(0.5)的条件下,铁屑与活性炭的质量比为10:1,反应温度为25℃,反应时间为60min,处理的废水量为30mL/g物料,铬(Ⅵ)的去除率为97.92%,处理后的水中铬(Ⅵ)浓度为0.051 mg/L,远低于国家污水综合排放标准(GB 8978-1996)第一类污染物最高允许排放浓度.用铁屑一活性炭微电解法处理含铬(Ⅵ)废水比单独用铁屑还原或活性碳吸附处理含铬(Ⅵ)废水效果好.  相似文献   

19.
李晓颖 《辽宁化工》2013,42(5):449-451
主要对硫化亚铁处理含铬(Ⅵ)废水进行了研究。通过实验考察了废水的pH、硫化亚铁加入量、硫化亚铁粒度、反应时间及反应温度对废水中铬(Ⅵ)去除率的影响。实验结果表明,硫化亚铁处理含铬(Ⅵ)废水的其最佳工艺条件为:废水的pH为3、硫化亚铁粒度为120目、加入量为0.05 g、反应时间为4 min、反应温度为25℃。在此条件下可使50 mL模拟含铬(Ⅵ)废水中铬(Ⅵ)浓度由10 mg.L-1降到0.042 mg.L-1,铬(Ⅵ)去除率达99%以上,达到了国家《污水综合排放标准》。  相似文献   

20.
以国内几家危险废物处置利用企业产生的熔炼水淬渣为研究对象,分析研究原料、产品和工艺流程,并通过采集100个熔炼水淬渣样品进行元素含量分析和危险特性测试,结合熔炼水淬渣的产生过程分析其危险特性的影响因素。结果表明,水淬渣的腐蚀性(pH值)7.39~10.38,浸出液中镍浓度最大占标率11.62%,其他无机元素及化合物浓度最大占标率均低于10%。原料中添加生石灰会造成水淬渣的腐蚀性(pH值)偏碱性,水淬渣浸出液中镍浓度与原料中重金属镍含量、以及焚烧过程中影响水淬渣对重金属固化效果的工艺参数的有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号