首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 300 毫秒
1.
探讨不同干燥温度和不同切片厚度条件下番木瓜的热风干燥特性。通过9种数学模型对番木瓜热风干燥试验数据进行拟合,结果表明:同大多数农产品干燥一样,番木瓜热风干燥主要为降速过程。不同干燥温度和物料厚度番木瓜热风干燥的水分有效扩散系数Deff的变化范围分别是1.798 4×10-8~3.323 3×10-8,0.579 3×10-8~2.852 2×10-8 m2/s,由此可以看出番木瓜热风干燥的水分有效扩散系数随着干燥温度和物料厚度的增大而增大;Page模型是番木瓜热风干燥过程的最适模型,平均R2值、SSE值、RMSE值和X2值分别为0.998 1,0.003 3,0.012 4,0.000 2。经回归分析,得到温度、厚度与有效水分扩散系数Deff的关系表达式。研究结果可以为生产实践中预测番木瓜热风干燥的水分变化提供参考。  相似文献   

2.
山药微波热风耦合干燥特性及动力学模型   总被引:2,自引:0,他引:2  
王汉羊  刘丹  于海明 《食品科学》2018,39(15):115-121
为探索山药微波热风耦合干燥特性,采用微波热风耦合干燥技术研究不同切片厚度、热风温度、热风速率 和微波功率密度对山药干燥特性及水分有效扩散系数的影响,并建立干燥动力学模型。结果表明:山药微波热风耦 合干燥过程按干基含水率的变化主要分为加速和降速两个阶段,无明显恒速阶段;山药的水分有效扩散系数范围 为0.879 1×10-6~8.245 8×10-6 m2/s,其值与切片厚度、热风温度和微波功率密度成正比,并随热风速率的增大先 减小后增大;与热风速率和热风温度相比,切片厚度和微波功率密度对水分有效扩散系数的影响更加显著。通过拟 合9 种常用干燥模型,表明Two-term exponential模型的R2平均值最大,χ2平均值和均方根误差平均值最小,分别为 0.998 0、0.000 2和0.014 7。相同实验条件下Two-term exponential模型的预测值与实验值拟合较好,表明该模型适合 预测山药微波热风耦合干燥过程的水分含量变化规律。本研究结果可为微波热风耦合干燥技术应用于山药及其他农 产品的干燥提供理论依据。  相似文献   

3.
为探究甘薯片在热风干燥过程中的温度和水分分布,建立数值模型来模拟不同恒定干燥温度(50,60,70,80 ℃)的传热、传质过程。由于物料在热风干燥过程中会发生较为明显的收缩效应,其有效水分扩散系数会发生改变,对模拟的精准度产生影响,因此对比了依赖温度、收缩相关扩散系数两种方式的传热、传质过程。结果表明,基于收缩相关的有效水分扩散系数能准确地描述甘薯片的热风干燥过程,其中依赖收缩的水分比以及温度的模拟值与试验值的决定系数(R2)在 0.976~0.994和0.961~0.981之间。为了分析不同热风温度对甘薯片干燥后质量的影响,从色差、复水率及感官评分方面分析,得出60 ℃为甘薯片热风干燥的最佳温度。模拟试验结果表明,有效水分扩散系数随热风温度的升高而上升,传热、传质系数对甘薯片温度变化以及干燥过程的影响十分显著。所开发的模型可为不同干燥温度下模拟研究其它农作物的干燥过程提供借鉴。  相似文献   

4.
胡萝卜薄层干燥动力学模型研究   总被引:3,自引:0,他引:3  
为探索胡萝卜热风干燥过程中水分的变化规律,本研究以胡萝卜为干燥对象,进行薄层干燥特性及模型研究,探讨不同温度、风速及物料厚度条件下胡萝卜水分比与干燥时间的关系,建立动力学模型;以Fick扩散定律为依据,确定胡萝卜一维传热传质的有效水分扩散系数并建立其数学模型。结果表明:胡萝卜薄层干燥动力学模型可用Page方程来描述,并通过回归分析确定方程系数m、k,通过多元线性回归方法得到有效水分扩散系数(Deff)与温度、风速和厚度的表达式,实验得到的Deff值在0.84×10-9~6.69×10-9 m2/s范围内随着干燥温度、风速和物料厚度的升高而增大。  相似文献   

5.
在本研究中,为了探讨热风温度和切片厚度对山楂热风干制动力学的影响,将厚度为2 mm和4 mm的山楂切片置于50~90℃的热风干燥箱内进行干制处理,并采用5种常见食品薄层干燥模型对实验数据进行非线性拟合,通过比较评价决定系数(R~2)、卡方(χ~2)和均方根误差(RMSE)等统计数据确定山楂切片薄层热风干燥过程的最优模型。结果表明:山楂切片薄层热风干燥是内部水分扩散控制的降速干燥过程。Page模型是描述山楂切片薄层热风干燥过程的最优模型。不同干燥条件下有效水分扩散系数Deff和活化能Ea的求解结果表明,有效水分扩散系数Deff随热风温度和切片厚度的增加而增加,在干制温度范围内有效扩散系数的值在2.69×10~(-11)~16.12×10~(-11)m~2/s之间变化。对于切片厚度为2 mm和4 mm的山楂切片,活化能Ea分别为20.43、26.25 k J/mol。  相似文献   

6.
黄芪切片热风干燥特性及动力学模型研究   总被引:1,自引:0,他引:1  
分别研究热风温度(40,50,60℃)、风速(0.4,0.8,1.2m/s)和切片厚度(3,6,9mm)对黄芪切片热风干燥曲线、有效水分扩散系数、复水比和色差的影响,利用Weibull分布函数对试验数据进行拟合,并计算黄芪切片热风干燥活化能。结果表明:黄芪切片热风干燥属于降速干燥过程,热风温度和切片厚度对干燥时间影响较大,干燥过程服从Weibull分布函数(R~2=0.995 1~0.999 2);有效水分扩散系数为0.321×10~(-7)~1.178×10~(-7) m~2/s,热风温度和切片厚度对其影响较大,呈正相关性;干燥活化能为56.49kJ/mol,说明干燥操作较易实现;黄芪切片干制品复水比为2.02~2.43,随热风温度的升高而减小,随切片厚度的增加而增大;色差为1.96~7.01,随热风温度和风速的增加而增大,随切片厚度的增加而减小。  相似文献   

7.
马铃薯片热风对流干燥模型与特性   总被引:1,自引:0,他引:1  
为了描述马铃薯片热风对流干燥的特性,在对流热风干燥试验装置中进行了马铃薯片薄层干燥试验,研究了干燥温度对干燥过程的影响,用数学模型关联了试验的水分比与时间,计算了不同温度下的水分有效扩散系数,并拟合了其与干燥温度的关系。结果表明:干燥温度对干燥过程有明显影响;在所用的模型中Logarithmic模型能较好地描述马铃薯片热风对流干燥过程;厚度3 mm的马铃薯片,在风速0.95 m/s时,风温从50℃升高到80℃,水分有效扩散系数从1.73×10~(-9) m~2/s增大到3.33×10~(-9) m~2/s,并符合阿累尼乌斯方程,活化能为20.16 kJ/mol。  相似文献   

8.
彭郁  赵丹丹  李茉  温馨  倪元颖 《食品科学》2017,38(17):85-93
对比不同的间歇微波功率与热风耦合干燥及间歇微波干燥对白萝卜干燥特性(水分比、有效扩散系数和活化能)、中心与表面温度和颜色的影响。结果表明,有效扩散系数随水分含量的下降先缓慢上升后快速上升,活化能随水分含量的降低先缓慢升高后快速升高,Logistic模型能很好地反映活化能和水分之间的关系,并且单独进行间歇微波干燥的样品的活化能较高。干燥条件设定为间歇比5 s/20 s,热风温度30 ℃的样品其在干燥过程中物料中心温度最低,中心温度与物料表面温度相差最少,且干燥产品颜色最好。  相似文献   

9.
双孢菇废弃物菇柄热风干燥特性及动力学模型   总被引:1,自引:0,他引:1  
为提高双孢菇废弃物菇柄综合利用率,探讨其热风干燥过程中水分含量的变化,分析热风干燥过程中热风温度、切片厚度对干燥特性的影响,建立水分比与干燥时间的动力学模型,并对模型进行拟合检验。结果表明,随热风温度的升高,切片厚度的减小,双孢菇废弃物菇柄干燥时间缩短。热风干燥过程主要为降速期,其干燥过程符合Page方程。该模型预测值与试验值拟合良好。双孢菇废弃物菇柄的水分有效扩散系数随热风温度的升高而增大,随切块厚度的增加而降低。通过阿伦尼乌斯公式计算双孢菇废弃物菇柄的干燥活化能为27.274k J/mol。  相似文献   

10.
燕麦马铃薯复合面条热风干燥特性及其数学模型研究   总被引:1,自引:0,他引:1  
为探讨燕麦马铃薯复合面条热风干燥特性,以燕麦马铃薯粉为原料,制作复合面条,分析在不同温度、风速和面条厚度条件下复合面条的热风干燥特性,并建立相关的数学模型。结果表明:热风温度越高,风速越大,面条厚度越小,干燥时间越短;温度及面条厚度对复合面条的干燥特性影响较大,而风速影响较小,降速阶段为其主要阶段;Midilli模型能很好地表征复合面条的干燥过程,拟合效果较好(R~20.9),试验值和预测值能够较好地吻合,该模型可为复合面条热风干燥过程提供可靠的分析和预测;有效水分扩散系数D_(eff)在10~(-10) m~2/s数量级范围内,且随干燥温度和风速的升高、面条厚度的降低而增大,复合面条干燥活化能Ea为43.15kJ/mol。  相似文献   

11.
对比不同的间歇微波功率与热风耦合干燥及间歇微波干燥对白萝卜干燥特性(水分比、有效扩散系数和活化能)、中心与表面温度和颜色的影响。结果表明,有效扩散系数随水分含量的下降先缓慢上升后快速上升,活化能随水分含量的降低先缓慢升高后快速升高,Logistic模型能很好地反映活化能和水分之间的关系,并且单独进行间歇微波干燥的样品的活化能较高。干燥条件设定为间歇比5 s/20 s,热风温度30℃的样品其在干燥过程中物料中心温度最低,中心温度与物料表面温度相差最少,且干燥产品颜色最好。  相似文献   

12.
黄敏  甘婷  易萍  黄方  李丽 《食品与机械》2024,40(4):179-186,209
目的:为对芒果热风干燥过程进行预测与控制。方法:以新鲜金煌芒为试验材料,研究热风温度(60,65,70 ℃)和芒果切片厚度(0.8,1.0,1.2 cm)对芒果热风干燥曲线、干燥特性曲线、水分有效扩散系数等的影响,并选取常用的适用于果蔬的6种干燥模型进行拟合、分析及验证,选出最适合芒果热风干燥的模型。结果:随温度的升高,切片厚度的减小,加快了芒果片的干燥速率,所需的干燥时间越短。水分有效扩散系数随温度和厚度的增大而增大,为1.401 39×10-10~3.655 46×10-10 m2/s。Logarithmic模型的R2最大、X2和RMSE最小,分别为0.998 87,0.000 124 779,0.001 37。结论:Logarithmic模型预测值与试验值验证基本吻合,可以较好反映芒果片在干燥过程中水分含量的变化规律。  相似文献   

13.
以切片厚度为3 mm的新鲜柠檬为原料,研究热风干燥温度(50、60、70、80℃)对柠檬片干燥特性和理化品质的影响。结果表明:热风温度是影响柠檬片干燥的重要因素,柠檬片的干燥过程是一个降速过程。随干燥温度的升高,干燥速率和水分有效扩散系数增大,干燥时间缩短;干燥过程中,水分有效扩散系数随水分含量降低而增大。同其他热风温度相比,70℃热风干燥处理时间相对较短,柠檬片具有较好的颜色品质,总类胡萝卜素、总酚的含量较高,DPPH·清除能力维持在一个较好的水平,适合对柠檬片进行干制。  相似文献   

14.
为提高马铃薯片的热风干燥效率及品质,控制其干燥过程中的收缩变形,本文研究了不同热风温度(45、55、65、75 ℃)和切片厚度(3、5、7、9 mm)对马铃薯片热风干燥特性曲线、有效水分扩散系数及活化能等指标的影响。结果表明,干燥室内热风温度越高、马铃薯切片厚度越小时,干燥速率越快。在研究范围内,马铃薯片的有效水分扩散系数在5.02×10?10~11.53×10?10 m2/s范围内,其值随热风温度升高或切片厚度减小而增大。此外,研究发现Weibull分布函数能够很好地描述马铃薯片的降速干燥过程和收缩动力学模型。通过Arrhenius方程计算得到马铃薯片的干燥活化能和收缩活化能分别为27.35和46.44 kJ/mol,马铃薯片干燥比收缩消耗活化能少。本研究为马铃薯片在热风干燥加工中水分迁移和体积收缩变化的预测提供了理论依据和技术支撑。  相似文献   

15.
王迪芬  苑亚  魏娟  张冲  杨鲁伟 《食品工业科技》2021,42(1):144-148,155
为提高苹果片的热风干燥品质,采用超声波和护色剂(0.1%的NaCl、1.0%的蔗糖和0.8%的海藻糖)的预处理方法,并以热风温度、切片厚度和预处理作为试验因素,对苹果片进行热风干燥的正交实验研究并建立了苹果片热风干燥特性的数学模型。结果表明:干燥速率随切片厚度的减少、热风温度的升高而增加,超声波和护色剂都能促进干燥过程;苹果片最佳热风干燥工艺参数为热风温度为60℃,厚度为1.5 mm以及预处理方式为护色剂浸泡预处理;Weibull是模拟苹果片热风干燥特性的最优模型,干燥过程苹果片的有效扩散系数为1.1278×10-8~5.2940×10-8 m2·s-1。此次研究为实际苹果热风干燥提供依据。  相似文献   

16.
利用热风对海鲜菇进行干燥,考察了干燥温度对海鲜菇干燥特性的影响,并用3种常用的干燥经验模型对其进行拟合。结果表明干燥温度对海鲜菇干燥的特性影响较大,随着干燥温度的升高,干燥效果提高明显。海鲜菇的热风干燥过程分为加速、降速和恒速3个阶段,其中降速为主要阶段。Page方程较适用于海鲜菇的热风干燥动力学模型的描述,可以用来控制与预测海鲜菇的热风干燥过程。海鲜菇的水分有效扩散系数随着热风干燥温度的升高而增大,当热风温度从333 K增加到353 K时,其水分有效扩散系数从1.62448×10-9 m2/s增加到4.32343×10-9 m2/s,海鲜菇热风干燥的活化能为48.17 kJ/mol,该研究为海鲜菇干燥过程的设备选型、节能降耗及干品品质提升提供技术支持。  相似文献   

17.
杏鲍菇的热风干燥特性与动力学模型   总被引:2,自引:1,他引:1       下载免费PDF全文
研究了杏鲍菇在不同热风温度、风速、物料尺寸、物料堆积层数等条件下的热风干燥特性,并建立热风干燥数学模型。试验表明:热风温度、风速、物料尺寸和物料堆积层数均显著影响杏鲍菇的热风干燥特性。热风温度越高、风速越快,杏鲍菇的干燥速率越快,干燥时间越短。当物料尺寸较小或物料单层干燥时,也能加快干燥速率,缩短干燥时间。杏鲍菇热风温度为80℃时干燥速率较快;风速为1.5 m/s时,杏鲍菇干燥速率较快,干燥时间较短;物料尺寸1 cm×1 cm,物料堆积层数为单层进行干燥时,干燥速率均较快。应用Matlab 7.0软件,采用高斯-牛顿运算法对5种干燥模型进行非线性回归拟合求解,并确定模型系数。结果发现Two-term模型具有较高的决定系数R2,较低的残差平方和SSE及均方根误差RMSE,该模型能准确地表达和预测杏鲍菇热风干燥过程的水分变化规律。  相似文献   

18.
研究了热风温度、风速、物料薄层厚度、辅料添加量、物料颗粒度对红枣渣-小麦粉混合粉热风干燥特性的影响,采用半理论方程,半经验方程和经验方程拟合试验数据,得到了红枣渣-小麦粉混合粉热风干燥的最适数学模型。试验结果表明:红枣渣-小麦粉混合粉热风干燥过程的最适模型为半理论方程单项指数模型。  相似文献   

19.
姜片热风干燥模型适用性及色泽变化   总被引:1,自引:0,他引:1  
孟岳成  王雷  陈杰  房升  李世垚 《食品科学》2014,35(21):100-105
为研究姜片的热风干燥特性,以姜片厚度、热风温度、热风风速3 个干燥条件为变量,考察其对姜片干燥特性的影响,将不同干燥条件下姜片的水分比、干燥速率进行比较并建立模型。结果表明:姜片的热风干燥以降速过程为主,而且姜片的水分比MR下降的速率随着热风温度、风速的增加而变快,随姜片厚度的增加而变慢。本实验选用常用的8 个薄层干燥模型进行拟合,经拟合后选择Modified Page模型作为姜片干燥过程的最优模型,解出模型为MR=exp[-(kt)n],其中k=-0.023 85+0.000 505T+0.023 38V-0.004 993L,n=1.318 307+0.003 016 5T-0.204 05V-0.002 859L,式中T为干燥温度(℃);V为热风风速(m/s);L为姜片厚度(mm)。此模型的平均R2值是0.997 9、χ2最小值是0.000 4、RMSE最小值是0.012 2。模型求解后,以模型外的实验组数据验证表现出较好的拟合度。姜片的有效水分扩散系数Deff随干燥温度、物料厚度、风速的增加而增加,且其值在1.763×10-8~1.054×10-7 m2/s之间变化,活化能为Ea=35.23 kJ/mol(R2=0.948 0)。此外还对姜片在干燥前后的色差进行了测定和分析。  相似文献   

20.
《食品与发酵工业》2017,(1):130-134
为了研究枸杞在不同热风干燥温度下的干燥特性,改善其干制品质,以宁夏枸杞为原料,对其进行不同温度的热风干燥处理,分析它的干燥特性和品质变化,结果表明:枸杞干制过程由升速、降速和恒速3个阶段组成,以降速阶段为主要过程;枸杞热风干燥水分有效扩散系数在0.76×10~(-10)m~2/s和1.98×10~(-10)m~2/s之间,且温度越高系数越大,枸杞干燥活化能为61.36 k J/mol;通过试验得出风速为0.2 m/s、湿度为30%、物料厚度1层(8 mm)恒定不变,温度为55℃热风干燥时制得的枸杞品质最好;此外,由枸杞的感官品质分析结果得出:色泽、口感和质地对枸杞的品质有重要的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号