首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many experimental investigations reveal that it is very difficult to have a completely martensitic structure by any hardening process. Some amount of austenite is generally present in the hardened steel. This austenite existing along with martensite is normally referred as the retained austenite. The presence of retained austenite greatly reduces the mechanical properties and such steels do not develop maximum hardness even after cooling at rates higher than the critical cooling rates.Strength can be improved in hardened steels containing retained austenite by a process known as cryogenic quenching.Untransformed austenite is converted into martensite by this treatment. This conversion of retained austenite into martensite results in increased hardness, wear resistance and dimensional stability of steel. Wear can be defined as the progressive loss of materials from the operating surface of a body occurring as a result of relative motion at the surface. Hardness, load,speed, surface roughness, temperature are the major factors which influences wear. Many studies on wear indicate that increasing hardness decreases the wear of a material. With this in mind, to study the surface wear on a surface modified (Cryogenic treated) steel material an attempt has been made in this paper. In this study as a Part -I Hardening was carried out on carbon tool steel (AISI 1095) of different L/D ratio with conventional quenchants like purified water, aqueous solution and Hot mineral oil. As a Part -II hardening was followed by quenching was carried out as said in Part- I and the hardened specimen were quenched in liquid Nitrogen which is at sub zero condition. The specimens were tested for its microstructure, hardness and wear loss. The results were compared and analyzed. The alloying elements increases the content of retained austenite hence the material used was AISI 1095 (Carbon 0.9%, Si 0.2%, Mn0.4% and the rest Iron)  相似文献   

2.
Low pressure plasma arc discharge-assisted nitriding of AISI 304 austenitic stainless steel is a process that produces surface layers with useful properties such as a high surface hardness of approximately 1500 Hv0.1 and a high resistance to frictional wear and corrosion. The phase composition, the thickness, the microstructure and the surface topography of the nitrided layer, as well as its properties, depend essentially on the process parameters. Among them, the processing temperature is the most important factor for forming a hard layer with good wear and corrosion resistance. Nitriding austenitic stainless steel at approximately 420°C for 70 min can produce a thin layer of 7–8 μm with very high hardness and good corrosion resistance on the surface. The microstructure was studied by optical microscopy and both glancing angle and conventional Bragg–Brentano (θ–2θ) symmetric geometry X-ray diffraction (XRD). The formation of expanded austenite was observed. Measurements of the wear depths indicated that the wear resistance of austenitic stainless steel can be improved greatly by nitriding at approximately 420°C using low-pressure plasma-arc source ion nitriding.  相似文献   

3.
冷处理对Cr12MoV钢硬度的影响   总被引:1,自引:0,他引:1  
测定不同热处理条件下Cr120MoV钢的硬度 残留奥氏体量,并进行金相和透射电镜观察发现,钢中的残留奥氏体和下贝氏体组织对冷作模具钢的耐磨性有不利影响。采用冷处理可以抑制下贝氏体转变,显著提高Cr12MoV钢的硬度和耐磨性能。  相似文献   

4.
45#钢表面激光合金化NiCr-Al2O3涂层的组织及耐磨性能研究   总被引:1,自引:1,他引:0  
刘通  孙桂芳  张永康 《表面技术》2016,45(10):64-69
目的提高平模制粒机中平模的耐磨性能。方法采用激光合金化技术在45#钢表面制备不同比例混合的NiCr-Al_2O_3合金化层。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)及附带的能谱仪(EDS)分析了合金化层的物相组成和显微组织,用FM-700自动显微硬度仪测量合金化层的硬度变化规律,用屏显式磨损试验机研究测试了合金化层的耐磨性能。结果合金化层主要由马氏体组成,且弥散分布着不同数量的未熔Al_2O_3颗粒,热影响区由马氏体和残余奥氏体组成。激光合金化层的主要物相为奥氏体和马氏体,Al_2O_3含量越多,马氏体相越多,而奥氏体相越少。合金化层的厚度约为0.9 mm,表面硬度大约是基材的2.4倍,表面耐磨性是基材的6倍以上。在一定范围内,合金化层中Al_2O_3颗粒的含量越高,平均显微硬度越大且更加均匀,耐磨性越好。热影响区的硬度变化均匀,起到了很好的过渡作用。磨损机理主要是犁削磨损,Al_2O_3颗粒的存在可以减少磨粒对基体的犁削作用。结论在45#钢表面激光合金化NiCr-Al_2O_3混合涂层可以有效提高基体表面的硬度和耐磨性,Al_2O_3颗粒含量达30%时可以获得高硬度、高耐磨性且均匀的合金化层。  相似文献   

5.
借助Thermo-Calc、光学显微镜、扫描电镜、X射线衍射仪、洛氏硬度计及冲击磨损试验机对Fe-0.45C-1.6B高硼钢铸态和经Q&P工艺处理后的组织和性能进行分析。结果表明:高硼钢铸态组织由铁素体、马氏体及残留奥氏体构成的基体和共晶硼化物组成。经Q&P工艺处理发现,高硼钢在Ms点以下为马氏体等温转变,随着淬火时间的增加,基体中残留奥氏体越来越多,在淬火时间为120 s时达到极限。随着配分时间的增加,高硼钢中残留奥氏体增加,配分时间为80 s时残留奥氏体量最多,但是由于较多的残留奥氏体不能支撑硼化物,因此高硼钢的耐磨性降低。  相似文献   

6.
马氏体不锈钢具有高强度、良好的耐磨损性能以及一定的耐腐蚀性能。研制了一种马氏体不锈钢耐磨焊条,在低碳钢Q235上进行堆焊试验,分析堆焊接头的组织转变,并研究堆焊合金的耐磨性能。结果表明,该焊条具有良好的焊接工艺性能,堆焊层金属与母材结合良好,未出现裂纹等缺陷;堆焊层组织为板条马氏体+碳氮化物+少量残余奥氏体;碳氮化物沿马氏体基体和晶界析出,呈弥散分布,起到细晶强化和析出强化的作用;与母材相比,堆焊层金属的硬度和耐磨损性能明显提高,其磨损机制主要为显微切削和塑性变形。  相似文献   

7.
为了提高疏浚工程船用低碳低合金耐磨钢的耐磨性能,分别采用淬火+200 ℃低温回火、淬火+250 ℃配分、循环热处理3种热处理工艺对试验钢进行热处理,并借助扫描电镜与透射电镜分析组织与析出相,磨粒磨损试验机测试磨损质量损失,硬度计测试热处理钢的硬度。结果表明,试验钢淬火+200 ℃回火后得到回火马氏体,基体中有少量碳化物,回火马氏体仍呈板条状;淬火-配分试验钢得到马氏体加较多残留奥氏体;经循环热处理后,试验钢中马氏体板条消失,基体中有颗粒状(Nb,Ti)C析出相。试验钢淬火-回火后硬度为39.5 HRC,淬火-配分试验钢硬度为40.5 HRC,循环热处理试验钢硬度30.8 HRC。试验钢耐磨性与硬度成正比,试验钢经循环热处理后,磨损量最大,耐磨性能最差,淬火-回火试验钢次之,淬火-配分钢耐磨性能最好。3组试验钢磨粒磨损后试样表面均出现大量犁沟,磨损机制主要是塑性变形。  相似文献   

8.
为提高奥氏体不锈钢(ASS)的耐磨性及赋予其抗菌性能,应用改进的活性屏离子渗氮(ASPN)技术,将纯铜冲孔板置于不锈钢冲孔板上面作为活性屏的顶盖,对316奥氏体不锈钢在低温下(430℃)进行表面渗氮处理,在其表面形成由含Cu抗菌沉积层和S相(氮在奥氏体中的过饱和固溶体γN)硬质支撑层组成的功能梯度复合改性层。用扫描电镜(SEM)及其所附能谱仪(EDS)、X射线衍射仪(XRD)表征复合改性层的组织形貌、成分及相结构。用显微硬度计和往复摩擦磨损试验机测试了基体和复合改性层的显微硬度和摩擦磨损性能,用金黄色葡萄球菌进行体外抗菌试验评价复合改性层的抗菌性能。结果表明,在偏压达到250 V后,形成了连续分布的硬质S相扩散层和含Cu沉积层组成的复合改性层。改性层表面最高硬度可达928 HV0.05,与Si3N4小球对磨时比磨损率较基体降低约57.76%,显著提高了不锈钢的耐磨性。抗菌试验表明,复合改性层与金黄色葡萄球菌接触24 h后,对金黄色葡萄球菌抗菌率提高到98.5%。改进的活性屏离子渗氮技术制备的功能梯度复合改性层可以有效提高...  相似文献   

9.
针对核装备零部件维修再制造的需要,采用激光熔覆技术制备高强韧马氏体不锈钢熔覆层,以改善核装备零部件的表面性能,随后对熔覆层试样分别进行300 ℃和500 ℃保温2 h的回火处理。采用OM、SEM、显微硬度计、万能拉伸试验机等设备测试了试样的组织和性能。结果表明,原始试样的抗拉强度为1719 MPa,断后伸长率在15%左右,硬度为550 HV0.2,耐磨性较差;当回火温度为300 ℃时,出现逆转变奥氏体,硬度降至500 HV0.2,抗拉强度降为1662 MPa,断后伸长率超过15%,耐磨性提高;当回火温度上升到500 ℃时,逆转变奥氏体减少,碳化物逐渐析出,出现二次硬化,硬度又上升至530 HV0.2,抗拉强度降至1582 MPa,断后伸长率降至14%左右,耐磨性与原始试样相当。该高强马氏体不锈钢熔覆层整体耐腐蚀性均优于1Cr13钢,具有良好的耐腐蚀能力。  相似文献   

10.
不同压力对 TC4 钛合金真空脉冲渗氮的影响   总被引:1,自引:0,他引:1  
杨闯  刘静  马亚芹  洪流 《表面技术》2015,44(8):76-80,114
目的采用不同压力对TC4钛合金进行真空脉冲渗氮处理,提高其表面硬度及耐磨性。方法通过金相显微镜、X射线衍射仪、显微硬度计及耐磨试验机分析渗氮硬化层的组织与性能。结果 TC4钛合金经过真空气体渗氮处理后,形成了由Ti N,Ti2Al N和钛铝金属间化合物Ti3Al组成的复合改性层。渗氮压力太低,表面氮化物数量较少,氮化物层较薄;随渗氮压力的增大,表面氮化物数量增多,表面硬度及耐磨性增加。压力为0.015 MPa时,氮化物层表面硬度最大,表面硬度为1100~1200HV,有效硬化层深度为50~60μm。渗氮压力继续增加,表层组织变得疏松,表面硬度及耐磨性开始降低。结论选择合适的渗氮压力和表面氮浓度进行真空脉冲渗氮,可以提高钛合金表面硬度,改善耐磨性。  相似文献   

11.
304 不锈钢低温离子渗氮及氮碳共渗处理   总被引:1,自引:1,他引:0  
缪跃琼  林晨  高玉新  郑少梅  程虎 《表面技术》2015,44(8):61-64,102
目的研究304不锈钢离子渗氮层和氮碳共渗层的组织、硬度及耐磨、耐蚀性能,并考察渗层的磨损机理。方法利用离子渗氮及氮碳共渗工艺在304不锈钢表面获得硬化层,利用XRD,OM及共聚焦显微镜、显微硬度仪、电化学测试仪,分析处理前后渗层的组织、相结构及渗层的硬度及耐磨耐蚀性能。结果 304不锈钢氮碳共渗和渗氮层主要为S相层,在相同工艺条件下,氮碳共渗工艺获得的渗层为γN+γC的复合渗层,且厚度大于单一渗氮层。渗氮层和氮碳共渗层硬度约为基体硬度的3.5倍。在干滑动摩擦条件下,氮碳共渗层比渗氮层具有更好的耐磨性能;渗氮层的磨损机理为磨粒磨损的犁沟效应和断裂,氮碳共渗层的磨损机理为磨粒磨损的犁沟和微切削。电化学测试表明,渗氮层和氮碳共渗层的耐蚀性能均优于基体。结论 304不锈钢在420℃进行离子渗氮和氮碳共渗处理后,硬度和耐磨性能可大幅提高,且氮碳共渗处理效果更佳。  相似文献   

12.
使用正交试验对18Cr2Ni2MoNbA钢渗碳钢深冷处理工艺参数进行筛选优化,分析深冷处理时间、低温回火温度和时间对试样耐磨性的影响,并对试样磨痕形貌、显微组织、残留奥氏体以及显微硬度进行分析。研究表明,18Cr2Ni2MoNbA钢渗碳淬火后的-196 ℃深冷工艺参数对磨损量影响的显著性排序为:深冷处理时间>低温回火时间>低温回火温度。深冷处理能够有效增加试样的耐磨性,在深冷温度-196 ℃,深冷处理时间1 h,低温回火温度120 ℃,低温回火时间2 h的工艺下试样磨损量最小,与未深冷时相比减少46.67%,磨损机制变为磨粒磨损与氧化磨损。经过深冷处理后渗碳层的碳化物沿晶界析出,同时有小颗粒碳化物在基体上弥散析出。深冷处理能够降低钢的残留奥氏体含量,增加马氏体含量,使表层渗碳层的显微硬度增加,从而改善18Cr2Ni2MoNbA钢的耐磨性。  相似文献   

13.
In this study, the effects of cryogenic and boronising treatments on the wear behaviour and microstructure of 1.2344 steel were evaluated. X-ray diffraction analysis and scanning electron microscopy were used to investigate the microstructure, percentage of the retained austenite, and the carbides' morphology. In addition, a micro-hardness test and pin-on-disk wear method were utilised to assess the samples’ wear resistance. The results showed that the use of a cryogenic treatment improved hardness and wear resistance by 25% and 39%, respectively, compared with a quenching - tempering heat treatment. In addition, cryogenic and boronising treatments improved hardness and wear resistance by 228% and 75%, respectively, compared with a quenching - tempering heat treatment. The improvement in the properties of cryogenically treated and boronised-cryogenised samples in comparison with the quenched-tempered ones is due to the transformation of retained austenite to martensite, precipitation of fine carbides, and better carbide distribution. Also, the formation of the Fe2B phase affected the properties of the boronised-cryogenised samples. Moreover, examining the wear levels revealed that the dominant wear mechanism is adhesive and tribochemical wear.  相似文献   

14.
目的提高0Cr18Ni9Ti奥氏体不锈钢的抗高温摩擦性能。方法利用等离子渗金属技术在不锈钢表面等离子渗铪,之后进行固体渗碳,在HT-500型球-盘磨损试验机上进行高温摩擦磨损实验,分析其高温摩擦性能及摩擦机制,并与不锈钢基体试样及不锈钢渗铪试样进行对比。结果渗铪试样的渗层厚度约为45μm,渗铪+渗碳试样的渗层厚度达100μm。渗铪+渗碳层弥散分布着许多粒状和短棒状碳化物颗粒,碳化物类型主要为MC型、M7C3型和M23C6型。基材的摩擦曲线波动起伏大;渗铪试样的摩擦系数较大,但磨损微观表现平稳;渗铪+渗碳试样的摩擦系数最小。磨损失重由大到小依次为:基材渗铪试样渗铪+渗碳试样。在300,500℃下,渗铪试样的耐磨性相对基材分别提高至1.47倍和1.94倍,渗铪+渗碳试样分别提高至2.13和2.28倍。基材划痕尺寸宽且较深;渗铪试样的表面硬度提高,且摩擦磨损过程中出现了合金氧化物;渗铪+渗碳试样的表面硬度高,基体韧性好,仅出现了很浅且窄的磨痕。结论通过等离子渗铪及离子渗铪+固体渗碳,均能提高不锈钢表面的抗高温摩擦性能,相比之下,离子渗铪+固体渗碳的效果更好。  相似文献   

15.
研究了不同温度对AerMet100钢渗氮层和氮碳共渗层的显微组织、表面硬度、渗层截面硬度梯度以及耐磨性的影响,并考察了渗层的磨损机理。结果表明,氮碳共渗层相较于渗氮层表面生成的化合物更加细小,表面更加平整光滑;离子渗氮、离子氮碳共渗处理都可显著提高AerMet100钢的表面硬度;随着温度的增加,共渗层厚度也明显增加;氮碳共渗层比渗氮层具有更低的摩擦因数,在共渗温度为480 ℃时氮碳共渗试样具有最低摩擦因数和磨损率,表现出最佳的耐磨性。渗氮层的磨损机理为氧化磨损和表面疲劳磨损,氮碳共渗层的磨损机理为氧化磨损、磨粒磨损以及表面疲劳磨损。  相似文献   

16.
AISI316 不锈钢表面等离子渗硼及摩擦磨损性能的研究   总被引:3,自引:2,他引:1  
目的改善AISI316不锈钢的摩擦磨损性能。方法采用双辉等离子合金化技术,以块状Fe B化合物作为源极材料,在AISI316不锈钢表面制备含硼改性层,对渗层组织、成分、相结构和显微硬度进行分析,并研究改性层在干摩擦条件下的摩擦磨损性能。结果经渗硼处理后,AISI316不锈钢表面形成了一层连续、致密、均匀的改性层,主要由Mo2B和Fe B相组成。改性层具有较高的硬度(964HV0.1),较基体硬度提高了约3倍,且耐磨性较基体有明显提高。结论通过在AISI316不锈钢表面制备渗硼改性层,可明显提高基体材料的硬度和摩擦磨损性能。  相似文献   

17.
为提高EA4T车轴钢的表面硬度和耐磨性能,采用激光淬火对调质态车轴进行表面改性。利用扫描电镜、显微硬度计、纳米压痕仪等对激光淬火层的微观组织、相变层深度和硬度进行了详细的表征。结果表明:EA4T车轴钢表面经过不同工艺激光淬火后,相变层内的淬火组织主要由细小的板条马氏体和粒状贝氏体组成,其深度根据工艺不同从100 μm到800 μm不等,并呈现随淬火功率的增加和扫描速度减小,相变层深度逐渐增加的趋势。淬火相变层区域内,车轴钢的显微硬度基本保持在450 HV0.2左右,约为基体硬度的2倍,耐磨性显著提高。由于淬火道次之间搭接的原因,淬火层呈现波形分布,其中波谷马氏体含量高于波峰位置,因此其硬度明显高于波峰处。  相似文献   

18.
研究了锻造变形量与热处理工艺对一种新型耐磨钢显微组织、硬度和耐磨性的影响,并用彩色金相法定量分析了钢中马氏体+残留奥氏体含量。结果表明:不同变形量下耐磨钢组织均为贝马复合相,贝氏体板条厚度由30%变形量的524 nm降低到70%变形量的292 nm,马氏体+残留奥氏体体积分数由25.4%增加至41.1%;与直接进行260 ℃等温转变时相比,先在Ms点以上的330 ℃保温5 min,再进行260 ℃等温转变时的贝氏体板条厚度减少了357.2 nm,磨损量降低了0.02 g,且平均摩擦因数由0.311降至0.212。  相似文献   

19.
The dc glow discharge plasma nitriding of austenite stainless steel with severe surface deformation layer is used to produce much thicker surface modified layer. This kind of layers has useful properties such as a high surface hardness of about 1500 Hv 0.1 and high resistance to frictional wear. This paper presents the structures and properties of low temperature plasma nitrided austenitic stainless steel with severe surface deformation layer.  相似文献   

20.
目的 提高17-4PH马氏体沉淀硬化不锈钢的表面硬度及耐磨性。方法 采用光纤激光器对17-4PH不锈钢进行激光气体氮化,采用不同激光功率在其表面制备渗氮层。利用光学显微镜(OM)、电子扫描显微镜(SEM)和X射线衍射仪(XRD)等设备分析渗氮层的显微组织和相组成;借助显微硬度仪测试渗氮层截面深度方向的硬度;采用多功能摩擦磨损试验机测试基体、渗氮层的摩擦学性能,并通过SEM分析磨痕形貌,揭示基体与渗氮层的磨损机制。结果 在渗氮前样品组织为回火马氏体,经激光渗氮后样品表面形成了由板条马氏体组成的熔化区和回火马氏体组成的热影响区构成的渗氮层。经渗氮后,样品的硬度均得到提高。在激光功率3 000 W下,渗氮层的表面硬度最高,达到了415HV0.2,约是基体硬度的1.2倍,渗氮层的硬度随着深度的增加呈下降趋势,在深度为2.6 mm处其硬度与基体一致。在回火马氏体向板条马氏体转变的相变强化,以及氮原子(以固溶方式进入基体)的固溶强化作用下,提高了渗氮层的硬度。经渗氮后,样品的摩擦因数均高于基体,但渗氮后其磨损量相较于基体有所减少,在激光功率3 000 W下,其磨损体积最小,相较于基体减少了62%。在激光功率2 500 W下马氏体转变不完全,在激光功率3 500 W下渗氮层出现了裂纹,都降低了渗氮层的硬度,其耐磨性也随之减小,且都略低于在3 000 W下。磨损机制由渗氮前的以黏着磨损为主,转变为渗氮后的以磨粒磨损为主。结论 在17-4PH马氏体沉淀硬化不锈钢表面进行激光渗氮后,其表面硬度和耐磨性均得到提高,在激光功率3 000 W下制备的渗氮层具有较高的表面硬度和优异的耐磨性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号