首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
顾小杰  王杰 《测控技术》2018,37(11):129-133
针对微机电系统(MEMS)近红外光谱仪中MEMS微镜驱动系统的耦合与复杂扰动问题,提出了一种基于扰动观测器(DOB)与模型预测控制(MPC)的复合控制结构。通过分析MEMS微镜的驱动工作原理,建立MEMS微镜偏转角与驱动电压的传递函数模型,设计了MPC以消除系统耦合,通过分析系统扰动模型,设计了DOB实现对系统内部与外部扰动的集中监测。仿真研究与实验测试结果表明:基于DOB MPC复合结构的MEMS微镜驱动控制系统,既可以有效抑制系统的外部扰动,又可以抑制由模型失配和变量耦合导致的内部扰动。  相似文献   

2.
Ball mill grinding circuits are essentially multi-variable systems characterized with couplings, time-varying parameters and time delays. The control schemes in previous literatures, including detuned multi-loop PID control, model predictive control (MPC), robust control, adaptive control, and so on, demonstrate limited abilities in control ball mill grinding process in the presence of strong disturbances. The reason is that they do not handle the disturbances directly by controller design. To this end, a disturbance observer based multi-variable control (DOMC) scheme is developed to control a two-input-two-output ball mill grinding circuit. The systems considered here are with lumped disturbances which include external disturbances, such as the variations of ore hardness and feed particle size, and internal disturbances, such as model mismatches and coupling effects. The proposed control scheme consists of two compound controllers, one for the loop of product particle size and the other for the loop of circulating load. Each controller includes a PI feedback part and a feed-forward compensation part for the disturbances by using a disturbance observer (DOB). A rigorous analysis is also given to show the reason why the DOB can effectively suppress the disturbances. Performance of the proposed scheme is compared with those of the MPC and multi-loop PI schemes in the cases of model mismatches and strong external disturbances, respectively. The simulation results demonstrate that the proposed method has a better disturbance rejection property than those of the MPC and PI methods in controlling ball mill grinding circuits.  相似文献   

3.
In this paper, we present a tuning methodology for a simple offset-free SISO Model Predictive Controller (MPC) based on autoregressive models with exogenous inputs (ARX models). ARX models simplify system identification as they can be identified from data using convex optimization. Furthermore, the proposed controller is simple to tune as it has only one free tuning parameter. These two features are advantageous in predictive process control as they simplify industrial commissioning of MPC. Disturbance rejection and offset-free control is important in industrial process control. To achieve offset-free control in face of unknown disturbances or model-plant mismatch, integrators must be introduced in either the estimator or the regulator. Traditionally, offset-free control is achieved using Brownian disturbance models in the estimator. In this paper we achieve offset-free control by extending the noise model with a filter containing an integrator. This filter is a first order ARMA model. By simulation and analysis, we argue that it is independent of the parameterization of the underlying linear plant; while the tuning of traditional disturbance models is system dependent. Using this insight, we present MPC for SISO systems based on ARX models combined with the first order filter. We derive expressions for the closed-loop variance of the unconstrained MPC based on a state space representation in innovation form and use these expressions to develop a tuning procedure for the regulator. We establish formal equivalence between GPC and state space based off-set free MPC. By simulation we demonstrate this procedure for a third order system. The offset-free ARX MPC demonstrates satisfactory set point tracking and rejection of an unmeasured step disturbance for a simulated furnace with a long time delay.  相似文献   

4.
Composite predictive flight control for airbreathing hypersonic vehicles   总被引:1,自引:0,他引:1  
The robust optimised tracking control problem for a generic airbreathing hypersonic vehicle (AHV) subject to nonvanishing mismatched disturbances/uncertainties is investigated in this paper. A baseline nonlinear model predictive control (MPC) method is firstly introduced for optimised tracking control of the nominal dynamics. A nonlinear-disturbance-observer-based control law is then developed for robustness enhancement in the presence of both external disturbances and uncertainties. Compared with the existing robust tracking control methods for AHVs, the proposed composite nonlinear MPC method obtains not only promising robustness and disturbance rejection performance but also optimised nominal tracking control performance. The merits of the proposed method are validated by implementing simulation studies on the AHV system.  相似文献   

5.
Usage of frequency based error correction methods for repetitive disturbances becomes popular in data storage devices that use a rotating mechanical power plant. Two distinct disturbance cancellation methods, disturbance observer (DOB) and adaptive feed forward control (AFC) are the most popular approaches used for current drive servo integration. DOB reduces error using a predetermined function that is calculated thorough a complicated process. Generally the response to disturbance and initiation of control action of DOB is relatively fast even if the amount of error reduction is limited. Meanwhile the error elimination capability of AFC for the repetitive disturbance is normally better than DOB as it utilizes a Fourier coefficients updating feature that supports an enhanced fine adaptation of a certain frequency disturbance. Of course, AFC suffers for disturbances that have neighboring close frequencies due to the inherent fundamental frequency dependencies of AFC formulation. In the present work, an attempt for combining benefits of AFC and DOB is made. This might enables control action not only to generate fast response to disturbance but also perform an accurate error rejection. This feature also provides to the closed loop system a frequency selection for enabling a strategic selective error rejection. The proposed method named Hybrid Disturbance Observer (HDOB) is compared to the traditional AFC and DOB.  相似文献   

6.

Recently, a cable-driven parallel robots (CDPRs) has been applied to radio telescope as the accurate actuator, that is the five-hundred-meter aperture spherical telescope. It can be affected by the disturbances such as wind, earthquake and so on. Therefore, this paper developed a disturbance observer (DOB)-based control suitable for CDPR. The propose of the control is to reduce the effects of disturbance while the end-effectors maintains the same position even though the disturbance affects it. The key component of the DOB controller is a disturbance observer, which includes inverse nominal plant for each cable. So, a system identification test was carried out firstly. Then, the simulation and experiment were also carried out to evaluate the performance of the algorithm in CDPR. The results showed that the designed DOB algorithm could effectively reduce disturbances.

  相似文献   

7.
An offset-free controller is one that drives controlled outputs to their desired targets at steady state. In the linear model predictive control (MPC) framework, offset-free control is usually achieved by adding step disturbances to the process model. The most widely-used industrial MPC implementations assume a constant output disturbance that can lead to sluggish rejection of disturbances that enter the process elsewhere. This paper presents a general disturbance model that accommodates unmeasured disturbances entering through the process input, state, or output. Conditions that guarantee detectability of the augmented system model are provided, and a steady-state target calculation is constructed to remove the effects of estimated disturbances. Conditions for which offset-free control is possible are stated for the combined estimator, steady-state target calculation, and dynamic controller. Simulation examples are provided to illustrate trade-offs in disturbance model design.  相似文献   

8.
王东委  富月 《自动化学报》2020,46(6):1220-1228
针对状态不可测、外部干扰未知, 并且状态和输入受限的离散时间线性系统, 将高阶观测器、干扰补偿控制与标准模型预测控制(Model predictive control, MPC)相结合, 提出了一种新的MPC方法. 首先利用高阶观测器同步观测未知状态和干扰, 使得观测误差一致有界收敛;然后基于该干扰估计值设计新的干扰补偿控制方法, 并将该方法与基于状态估计的标准MPC相结合, 实现上述系统的优化控制. 所提出的MPC方法克服了利用现有MPC方法求解具有外部干扰和状态约束的优化控制问题时存在无可行解的局限, 能够保证系统状态在每一时刻都满足约束条件, 并且使系统的输出响应接近采用标准MPC方法控制线性标称系统时得到的输出响应. 最后, 将所提控制方法应用到船舶航向控制系统中, 仿真结果表明了所提方法的有效性和优越性.  相似文献   

9.
针对Buck变换器系统中存在匹配和不匹配干扰的问题, 本文提出了一种基于干扰观测器(DOB)的改进型互补滑模控制(CSMC)策略. 首先, 建立存在多重干扰的Buck变换器数学模型, 将模型改写为标准二阶积分型控制对象, 将式中干扰统一为匹配干扰和不匹配干扰. 其次, 设计2个DOB分别估计匹配干扰和不匹配干扰, 实现有限时间内跟踪干扰信号, 以抵消各种不确定性对系统的影响. 然后, 设计互补滑模面, 提出基于等效控制的改进型互补滑模控制律, 保留边界层内鲁棒性的同时, 提升控制器的动态性能, 减小静态误差, 拓宽边界层参数选择范围. 最后, 基于李雅普诺夫理论证明所提出控制器的稳定性. 数字仿真表明, 提出的改进型CSMC控制器结合DOB的总体控制方案能够有效抑制系统匹配和不匹配干扰, 同时获得更快的收敛速度以及更高的跟踪精度.  相似文献   

10.
This paper presents two case studies on the performance evaluation and model validation of two industrial multivariate model predictive control (MPC) based controllers: (1) a 7-output, 3-input MPC with three measured disturbance variables for controlling a part of kerosene hydrotreating unit (KHU) and (2) a 8-output, 4-input MPC with five measured disturbances for controlling a part of naphtha hydrotreating unit (NHU). The first case study focuses on potential limits to control performance due to constraints and limits set at the time of controller commissioning. The root causes of sub-optimal performance of KHU are successfully isolated. Data from the NHU unit with MPC ‘on’ and with MPC ‘off’ are analyzed to obtain and compare several different measures of multivariate controller performance. Model quality assessment for the two MPCs are performed. A new model index is proposed to have a measure of simulation ability and prediction ability of a model. Closed-loop identification of KHU and closed-loop identification of NHU are conducted using the asymptotic method (ASYM) proposed by Zhu (1998).  相似文献   

11.
For positioning servo-systems, this paper presents a jerk-constrained time- optimal control (JCTOC) scheme, augmented with an improved disturbance rejection method. In mechanical systems, the jerk that is the time derivative of acceleration may cause many unwanted results when too high. Thus, the JCTOC method is proposed to constrain the system׳s jerk and also obtain a time-optimal characteristic with the constrained jerk. However, because the JCTOC relies on the accuracy of the plant׳s model, system uncertainties and disturbances can adversely affect the output response. Thus, a disturbance observer (DOB) is added for compensation of the perturbation. The DOB used in this paper is in an integral form, and is thus referred to as an integral DOB (IDOB). The IDOB is further enhanced with a dynamic compensator to provide both better noise immunity and asymptotic compensation for disturbances of various orders.  相似文献   

12.
Performance evaluation of two industrial MPC controllers   总被引:3,自引:0,他引:3  
This paper presents case studies of the performance evaluation of two industrial multivariate model predictive control (MPC) based controllers at the Mitsubishi chemical complex in Mizushima, Japan: (1) a 6-output, 6-input para-xylene (PX) production process with six measured disturbance variables that are used for feedforward control; and (2) a multivariate MPC controller for a 6-output, 5-input poly-propylene splitter column with two measured disturbances. A generalized predictive controller-based MPC algorithm has been implemented on the PX process. Data from the PX unit before and after the MPC implementation are analyzed to obtain and compare several different measures of multivariate controller performance. The second case study is concerned with performance assessment of a commercial MPC controller on a propylene splitter. A discussion on the diagnosis of poor performance for the second MPC application suggests significant model-plant-mismatch under varying load conditions and highlights the role of constraints.  相似文献   

13.
The existing active disturbance rejection control (ADRC) method may not provide sufficient disturbance rejection to multiple mismatched disturbances for the fractional order systems. In this paper, a composite disturbance rejection approach is developed for a class of fractional order uncertain systems, by synthesizing the fractional order ADRC (FOADRC) approach and a disturbance observer (DO)-based compensation scheme. Taking advantage of more disturbance information and a filter structure, an improved DO is developed to achieve precise estimation of disturbances in the presence of sensor noises. In addition, a state transformation is developed to convert the system into a simple integral chain model with only matched disturbances. Then a composite control law is designed to compensate the disturbances and provide satisfying dynamic performance. The efficiency of the proposed method is demonstrated by a numerical simulation and an actual servo control simulation, as well as the comparison with two kinds of the existing ADRC methods and the commonly used integral sliding mode control (I-SMC) method.  相似文献   

14.
This paper develops a novel robust tracking model predictive control (MPC) without terminal constraint for discrete-time nonlinear systems capable to deal with changing setpoints and unknown non-additive bounded disturbances. The MPC scheme without terminal constraint avoids difficult computations for the terminal region and is thus simpler to design and implement. However, the existence of disturbances and/or sudden changes in a setpoint may lead to feasibility and stability issues in this method. In contrast to previous works that considered changing setpoints and/or additive slowly varying disturbance, the proposed method is able to deal with changing setpoints and non-additive non-slowly varying disturbance. The key idea is the addition of tightened input and state (tracking error) constraints as new constraints to the tracking MPC scheme without terminal constraints based on artificial references. In the proposed method, the optimal tracking error converges asymptotically to the invariant set for tracking, and the perturbed system tracking error remains in a variable size tube around the optimal tracking error. Closed-loop input-to-state stability and recursive feasibility of the optimization problem for any piece-wise constant setpoint and non-additive disturbance are guaranteed by tightening input and state constraints as well as weighting the terminal cost function by an appropriate stabilizing weighting factor. The simulation results of the satellite attitude control system are provided to demonstrate the efficiency of the proposed predictive controller.  相似文献   

15.
The linear disturbance observer (DOB) approach has been successfully employed as a tool for robust control and disturbance rejection in practice. In this paper, we present a nonlinear DOB which inherits all the benefits of the classical linear DOB approach. In particular, we prove that the proposed nonlinear DOB recovers not only the steady-state performance but also the transient performance of the nominal closed-loop system under plant uncertainties and input disturbances. One novel feature of the proposed controller is that it is an add-on type inner-loop output-feedback controller; thus any type of outer-loop controller can be combined to enhance the closed-loop system performance. Our result is a semi-global one and the stability proof is given when the nonlinear system has a well-defined relative degree with a stable zero dynamics.  相似文献   

16.
This paper deals with the tracking control problem of quadrotor unmanned aerial vehicles (QUAVs) with external disturbances. First, because the QUAV model contains two non-integrity constraints, the dynamic model of the QUAV is decomposed into two subsystems which are independently controlled, so as to reduce controller design complexity. Secondly, the nonlinear disturbance observer (DOB) technique is integrated into a backstepping control method to design the controller for the first subsystem, in which a DOB is applied to estimate the lumped uncertainty. Based on the double power reaching law and the DOB, a multivariable sliding mode control (MSMC) scheme is developed for the second subsystem. Thirdly, based on Lyapunov theory, the closed-loop system is proved to be asymptotically stable. Finally, our comparative simulation results demonstrate that the presented control scheme behaves better in terms of tracking performance than the adaptive backstepping control (ABC) approach.  相似文献   

17.
Given a state space model together with the state noise and measurement noise characteristics, there are well established procedures to design a Kalman filter based model predictive control (MPC) and fault diagnosis scheme. In practice, however, such disturbance models relating the true root cause of the unmeasured disturbances with the states/outputs are difficult to develop. To alleviate this difficulty, we reformulate the MPC scheme proposed by K.R. Muske and J.B. Rawlings [Model predictive control with linear models, AIChE J. 39 (1993) 262–287] and the fault tolerant control scheme (FTCS) proposed by J. Prakash, S.C. Patwardhan, and S. Narasimhan [A supervisory approach to fault tolerant control of linear multivariable systems, Ind. Eng. Chem. Res. 41 (2002) 2270–2281] starting from the innovations form of state space model identified using generalized orthonormal basis function (GOBF) parameterization. The efficacy of the proposed MPC scheme and the on-line FTCS is demonstrated by conducting simulation studies on the benchmark shell control problem (SCP) and experimental studies on a laboratory scale continuous stirred tank heater (CSTH) system. The analysis of the simulation and experimental results reveals that the MPC scheme formulated using the identified observers produces superior regulatory performance when compared to the regulatory performance of conventional MPC controller even in the presence of significant plant model mismatch. The FTCS reformulated using the innovations form of state space model is able to isolate sensor as well as actuator faults occurring sequentially in time. In particular, the proposed FTCS is able to eliminate offset between the true value of the measured variable and the setpoint in the presence of sensor biases. Thus, the simulation and experimental study clearly demonstrate the advantages of formulating MPC and generalized likelihood ratio (GLR) based fault diagnosis schemes using the innovations form of state space model identified from input output data.  相似文献   

18.
Quad-robot type (QRT) unmanned aerial vehicles (UAVs) have been developed for quick detection and observation of the circumstances under calamity environment such as indoor fire spots. The UAV is equipped with four propellers driven by each electric motor, an embedded controller, an Inertial Navigation System (INS) using three rate gyros and accelerometers, a CCD (Charge Coupled Device) camera with wireless communication transmitter for observation, and an ultrasonic range sensor for height control. Accurate modeling and robust flight control of QRT UAVs are mainly discussed in this work. Rigorous dynamic model of a QRT UAV is obtained both in the reference and body frame coordinate systems. A disturbance observer (DOB) based controller using the derived dynamic models is also proposed for robust hovering control. The control input induced by DOB is helpful to use simple equations of motion satisfying accurately derived dynamics. The developed hovering robot shows stable flying performances under the adoption of DOB and the vision based localization method. Although a model is incorrect, DOB method can design a controller by regarding the inaccurate part of the model and sensor noises as disturbances. The UAV can also avoid obstacles using eight IR (Infrared) and four ultrasonic range sensors. This kind of micro UAV can be widely used in various calamity observation fields without danger of human beings under harmful environment. The experimental results show the performance of the proposed control algorithm.  相似文献   

19.
The present work concerns model predictive control (MPC) of centrifugal gas compressors and describes the development of an MPC application for the tasks of anti-surge and process control. More specifically, the MPC formulation focuses on the question of how the transient manipulation of driver torque can be used to improve the performance of anti-surge and process control. For the purpose of testing and validating the proposed control algorithm, an experimental compressor test rig is presented, which is designed to mimic a typical centrifugal compressor application in the oil and gas industry. Modeling and parameter identification of the experimental setup is followed by the realization of the MPC solution on an embedded system to comply with the stringent real-time requirements for anti-surge control. Testing is performed with experiments using suction and discharge side disturbances, which are created by rapid valve closures. For comparison the same tests are repeated with conventional control approaches. The test results indicate improvements in maintaining the distance to surge by up to 11%, while at the same time reducing the process control settling time by up to 50%.  相似文献   

20.
This paper presents a composite controller based on a disturbance observer for the gimbal system of double-gimbal magnetically suspended control moment gyro (DGMSCMG) with harmonic drives. The controller removes the influence by coupling moments and nonlinear transmission torques. The disturbances are estimated by the designed disturbance observer. By introducing a state feedback controller, the disturbances can be eliminated from the output channel of the system. The gain selection principle of the disturbance observer is also analyzed. Both the simulation and experimental results indicate that the proposed control method can reject mismatched disturbances and improve system performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号