首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
设计并实现了一个基于延时锁定环(DLL)、用于超宽带(UWB)无线通信系统的1.25GHz时钟生成电路。该时钟生成电路由两个DLL和一个自调谐LC滤波电路组成,输入125MHz的参考时钟,输出1.25GHz的差分时钟和间隔100ps的16相时钟。通过优化电荷泵电路有效地减小了静态相位误差,新式自调谐LC滤波电路的应用消除了工艺偏差对谐振的影响。在1.8V电源电压,SMIC0.18μmCMOS工艺下,该时钟生成电路在各种工作条件下均表现出良好的性能,在标准情况下静态相位误差仅为9ps,最大时钟抖动为10ps。当电感存在30%的工艺偏差时,滤波电路的谐振频率能够自动维持在1.25GHz上。  相似文献   

2.
介绍了一种基于双沿输出的14位4 GS/s RF DAC电路设计。该电路采用0.18μm CMOS工艺实现,电路主要包含LVDS接收同步、高速温度计译码器、高速MUX、数据同步电路、DAC核等单元。该电路实现4 GS/s数据率的核心是双沿输出技术。采用该技术只需处理2 GHz时钟,与传统单沿输出DAC相比,时钟频率减少了一半。测试电路能在4 GS/s数据率下正常工作。  相似文献   

3.
采用0.18μm CMOS工艺设计了一款6.25 GHz锁相环倍频器,该倍频器适用于12.5 Gbit/s半速率复接的串行器/解串器(SerDes)发射系统。该锁相环倍频器不仅为SerDes发射系统提供6.25 GHz的时钟,也为系统提供1.25 GHz占空比1∶4的时钟。设计中鉴频鉴相器采用真单相时钟(TSPC)触发器,电荷泵采用电流舵结构,压控振荡器采用三级双延时环路结构,20分频器中的高速五分频采用源极耦合场效应晶体管逻辑(SCFL)触发器、低速四分频采用TSPC触发器。电路芯片面积为0.492 mm×0.668 mm。测试结果显示,锁相环的锁定范围为4.78~6.6 GHz,在1.8 V电源电压下核心电路的功耗为67.5 mW。当锁相环工作在6.25 GHz时,10 MHz频偏处相位噪声为-98.5 dBc/Hz,峰峰抖动为15 ps,均方根(RMS)抖动为3.5 ps。  相似文献   

4.
王子青  赵子润  龚剑 《半导体技术》2018,43(8):579-583,638
基于InP双异质结双极晶体管(DHBT)工艺设计并实现了一款6 bit高速数模转换器(DAC)芯片,该InP工艺DHBT器件的电流增益截止频率大于200 GHz,最高振荡频率大于285 GHz.DAC芯片采用R-2R梯形电阻电流舵结构,输入级采用缓冲预放大器结构,实现输入缓冲及足够高的增益;D触发器单元采用采样/保持两级锁存拓扑结构实现接收数据的时钟同步;采用开关电流源单元及R-2R电阻单元,减小芯片体积,实现高速采样.该DAC最终尺寸为4.5 mmX3.5 mm,功耗为3.5W.实测结果表明,该DAC可以很好地实现10 GHz采样时钟下的斜坡输出,微分非线性为+0.4/-0.24 LSB,积分非线性为+0.61/-0.64 LSB.  相似文献   

5.
超高速A/D转换器对精准的时钟电路提出严格要求,时钟抖动是影响其精度的重要因素。文章在分析时钟抖动对A/D转换器的影响后,介绍了一种适用于GHz的低抖动四相位时钟电路。电路采用时钟恢复电路、四相位分布网络和相位校正电路,得到占空比稳定、相位误差小的四相位时钟。采用0. 18μm CMOS工艺实现,电路仿真表明,四相位输出时钟抖动102 fs,占空比调整范围30%~70%,功耗277 mW@1. 8 V。  相似文献   

6.
针对数字射频存储器(DRFM)量化方式的差异、优势和不同的应用范围,介绍相位量化数模转换器(DAC)的系统架构,提出相位量化DAC主要电路模块的一种实现方案,论述了该方案的优缺点,并基于90 nm CMOS工艺模型进行仿真,仿真结果表明该芯片可在2 GHz时钟速率下完成转换和量化,瞬时带宽可达250 MHz。  相似文献   

7.
本文呈现了一款基于0.18?m CMOS工艺的采样率为2GSPS的16位数模转换器。此DAC采用数字域分时复用的系统架构,利用双通道LVDS接口接收数据,采用模拟DLL技术来满足LVDS数据初始相位与数据采样时钟相位关系的时序要求,设计FIFO吸收“数据时钟”和“DAC系统时钟”的相位误差,采用延迟控制器调节高速数字域时钟和模拟域时钟之间的相位关系,从而获得2GHz的采样率。同时,针对高位电流源失配设计后台数字校正。芯片测试结果显示,该DAC在模拟输出36MHz基波时的宽带SFDR达到74.02dBc,采用数字校正技术后D/A转换器的DNL小于±3.0LSB,INL小于±4.3LSB。  相似文献   

8.
分析了应用于时钟恢复电路中的相位插值器.为相位插值器建立了数学模型并基于模型对相位插值器在数学域进行了详细的分析.分析结果表明相位插值器输出时钟的相位和幅度强烈地依赖于插值器输入时钟间的相位差,同时提出一种新的编码方法来补偿相位的非线性.考虑到实际电路中寄生效应,文章同样在电路域中对相位插值器进行了详细分析.通过建立电路模型得到RC时间常数和输入时钟间的相差的关系,得到了它对相位插值器线性的影响.在设计中通过在PI的输入增加可控RC的输入缓冲器来调整输入时钟沿的快慢,从而降低了这种影响.最后利用分析得到的结论,使用90nm CMOS工艺设计并制造了一个相位插值器.它的供电电压为1.2V,功耗为1mw,工作范围从1GHz到5GHz.测试结果表明,输出相位单调并具有良好的线性度,验证了分析的正确性.  相似文献   

9.
刘认  罗林  孟煦  刁盛锡  林福江 《微电子学》2016,46(6):767-771
提出了一种应用于10 Gb/s高速串并接口电路(Serdes)的高性能锁相环。采用正交压控振荡器(QVCO)实现4路等相位间隔的5 GHz时钟,输出采用2分频单转差缓冲器,实现可忽略相差的8路等相位间隔的2.5 GHz时钟。电荷泵中采用负反馈技术,以提高电流匹配性能。在SMIC 40 nm工艺下完成设计,在 1.1 V的供电电压下,锁相环的总电流为7.6 mA,输出5 GHz时钟在10 kHz~100 MHz积分范围内的均方根抖动约为107 fs,芯片尺寸仅为780 μm×410 μm。  相似文献   

10.
介绍了一款基于0.13 μm SiGe BiCMOS工艺设计的12位4.5 GSPS D/A转换器。首先给出了低延迟高速率DAC设计对制造工艺器件参数的约束评估,设计采用了低延迟架构和CML逻辑。一种创新的输出模式架构突破了大多数DAC输出频谱sin(x)/x包络的极限,有效扩展了DAC的线性度。同时,该架构减小了关节节点的寄生电容和电感,扩展DAC可用模拟输出带宽至5.9 GHz,该DAC芯片流片测试结果显示其转换速率达到了4.5 GHz,延迟时间少于3.5个时钟周期,转换器在时钟频率4.5 GHz,输出模拟信号频率4.455 GHz时,SFDR达到57 dBc。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号