首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
利用扫描电镜和透射电镜研究了30CrMnSiA钢超塑性变形中组织结构变化。结果表明,变形中合金元素的扩散导致横向晶界的宽化,并且富集了Si、Cr、Mn元素。三角晶界上呈现的显微空洞宏观调节了晶粒的三维重排过程。未溶碳化物与晶格位错、晶界以及晶界位错之间有相互作用关系。扩散和位错运动微观调节了晶界滑动,并导致它的发展。  相似文献   

2.
为了研究9Ni钢热处理过程中的组织演变和合金元素配分对强韧化的影响,采用QT(Quenching+Tempering)和QLT(Quenching+Lamellarizing+Tempering)工艺对9Ni钢进行了热处理,并详细分析了热处理过程中组织和成分配分的变化规律.结果表明:奥氏体化淬火后存在极少量的残余奥氏体(γR),主要富C和Si.580℃回火1 h时,QT工艺条件下原奥氏体晶界上逆转奥氏体(γ’)能富C、Si、Mn和Ni元素,晶内的γ’中无明显Ni和Mn富集;QLT处理后,合金元素发生了配分,所有富合金元素相中均富集C、Si、Mn和Ni元素.两相区保温后实现增韧归因于:板条马氏体基体的大角度晶界比例增加、晶粒细化;组织结构得到优化;增加了γ’形核点,使得γ’量增加,导致马氏体基体净化程度进一步提高.  相似文献   

3.
为了进一步揭示增材制造对金属材料的微观组织与高温氧化性能的影响规律,本文采用光学显微镜、扫描电子显微镜、能量色散谱、电子背散射衍射和X射线衍射等方法,对比研究了轧制态与激光选区熔化(Selective Laser Melting,SLM)制备的 Inconel 625合金垂直和平行于成形方向横截面(XY和XZ面)的微观结构,并探究了两种合金在900 ℃下的高温氧化性能。研究表明,SLM制备的合金与传统轧制合金的显微组织存在明显区别:轧制合金呈等轴晶,晶粒尺寸为(15±2.5) μm,具有更多的大角度晶界和较大的位错密度;SLM制备的合金呈多晶结构,主要由胞状晶与柱状晶组成,晶粒尺寸不均匀,其中胞状晶晶粒尺寸为0.2~2 μm,位错密度较小,呈现高度织构化特征;XRD结果表明,SLM并未改变合金的物相,SLM与轧制成形 Inconel 625合金由γ-Ni相组成。SLM合金的XY面和XZ面的晶粒取向存在较大差别,其中XZ面的晶粒取向为(001)。在900 ℃下,SLM合金的氧化速率更高,这种高氧化速率导致氧化膜致密性差,在SLM合金的亚表层区域形成空洞。轧制Inconel 625合金的抗氧化性能优于SLM合金,这主要归因于轧制合金具有更多的位错与孪晶。  相似文献   

4.
Al-Zn-Mg系铝合金作为一种轻质高强合金在航空航天和交通等领域有着重要的应用。获得更高的力学性能以及更优的耐腐蚀性能是Al-Zn-Mg系合金的发展方向,因此需要进一步优化其微观组织。在合金成分和热处理制度调控空间有限的情况下,微合金化成为该合金性能改善的一种重要手段。本文简要总结了微合金化元素对Al-Zn-Mg系铝合金力学性能、热加工行为及耐腐蚀性能的影响,重点关注了微合金化元素在不同工艺阶段下形成的第二相颗粒能有效细化晶粒并强烈阻碍位错运动;讨论了热加工变形过程中钉扎晶界及亚晶界、抑制回复再结晶的作用;阐述了提高合金耐腐蚀性能方法的内在机理。最后对Al-Zn-Mg系铝合金微合金化的研究方向进行展望,深入理解微合金化元素间、主微合金元素间的相互作用机理,实现微合金化元素的精准、精确投放将是未来主要的研究内容之一。明确微合金化元素在热加工过程中对变形组织及位错组态的调控作用将对提高合金耐腐蚀性能提供借鉴。  相似文献   

5.
采用光学显微镜、扫描电子显微镜、EBSD技术、透射电子显微镜和万能拉伸试验机等研究了冷轧变形对热轧态Al-Cu-Mg合金显微组织和性能的影响。显微组织观察结果表明,随着冷轧变形量的增加,合金中未溶的Al2CuMg[Fe, Mn]相和Al2Cu[Fe, Mn]相发生了破碎。基体中存在较多的棒状Al20Cu2Mn3相,该相附近存在大量缠结位错,对合金产生显著强化效果。在冷轧变形量为19%时,位错密度达到最大值。同时,随着冷轧变形量的增加,S、R、Cube、Goss、Brass织构的含量也增加,〈111〉、〈110〉织构的含量降低。力学性能测试结果表明,随着冷轧变形量的增加,合金强度提高,延伸率仍保持较高水平。当冷轧变形量为11%时,合金轧向综合力学性能最佳,抗拉强度为465.0 MPa,屈服强度为291.6 MPa,延伸率为19.0%。此时,合金横向抗拉强度为469.9 MPa,屈服强度为318.0 MPa,延伸率为16.9%。  相似文献   

6.
在低碳钢和低碳加铌、钒、钛微合金钢中,通过马氏体冷轧--回火的方法获得了尺寸为数百纳米的超细晶粒铁素体组织,研究了超细晶粒组的形成机制和热稳定性.通过马氏体相交在这些钢中引入了大量高密度位错,马氏体冷轧后位错进一步增殖,形成大量位错胞状结构;在500-600℃进行的60min回火将上述胞状结构转变成具有清晰大角晶界的超细晶粒.在回火过程中形成的微合金元素碳化物对位错运动和晶界移动具有有效的"钉扎"作用,有助于获得超细晶组织并明显提高其热稳定性.  相似文献   

7.
蓝慧芳  W.J.Liu  刘相华   《材料研究学报》2008,22(3):279-302
在低碳钢和低碳加铌、钒、钛微合金钢中,通过马氏体冷轧--回火的方法获得了尺寸为数百纳米的超细晶粒铁素体组织,研究了超细晶粒组的形成机制和热稳定性. 通过马氏体相变在这些钢中引入了大量高密度位错,马氏体冷轧后位错进一步增殖, 形成大量位错胞状结构;在500-600℃进行的60 min回火将上述胞状结构转变成具有清晰大角晶界的超细晶粒.在回火过程中形成的微合金元素碳化物对位错运动和晶界移动具有有效的“钉扎”作用,有助于获得超细晶组织并明显提高其热稳定性.  相似文献   

8.
采用原子探针层析技术(APT)等测试手段分析了LT24铝合金热轧后合金元素的偏聚规律。结果表明:热轧态铝合金晶粒内部有成分为Al0.5Mg(Si0.7Cu0.3)的析出相,析出相与基体之间的界面处没有元素偏聚。溶质原子Mg、Si、Cu在晶界处偏聚,在晶界处的偏聚规律与晶粒内部的相反,Cu的偏聚倾向远大于Si和Mg,晶界处Cu的含量达到基体Cu含量的45倍左右。基于实验结果,讨论了合金元素偏聚的规律及其对材料性能的影响。  相似文献   

9.
通过聚焦离子束在5A90铝锂合金试样表面蚀刻微米尺寸高分辨网格,在温度480℃、初始变形速率1×10~(-3)s~(-1)的变形条件下,定量研究其超塑性变形过程中晶界滑移和晶内位错滑移对总变形的贡献量,并采用扫描电镜、电子背散射衍射观察合金超塑性变形的组织演变作为佐证。结果表明:位错运动在超塑性变形初期(ε0.65)的贡献量约为60%~80%,为主要变形机制,在该阶段条带状晶粒逐渐细化和等轴化,平均晶粒尺寸减小约40%,晶粒转动作为协调机制;随着应变量的增大,发生明显的动态再结晶,晶粒尺寸开始增大,晶内位错滑移的作用逐渐减小,晶界滑移成为变形的主要机制。  相似文献   

10.
王辉  刘满平  唐恺  李毅超  韦江涛  姜奎  江家威 《材料导报》2016,30(15):119-123, 129
近年来,大塑性变形(SPD)制备具有先进结构和功能的超细晶和纳米晶Al-Mg铝合金的研究取得了很大进展。SPD后,合金的晶粒显著细化、位错密度提高及有非平衡晶界和晶界偏析形成,这些微观结构导致合金的强度、硬度大幅提高。然而,SPD合金的塑性普遍较低。综述了SPD制备的Al-Mg铝合金在结构和性能方面的一些最新研究成果。  相似文献   

11.
目的 优化加工工艺,改善合金的组织,提高合金的力学性能。方法 采用金相(OM)观察、拉伸试验和X射线衍射,分析在大应变轧制下冷轧结合T6态处理后板材的成形性能,引入Williamson-Hall模型和Taylor函数,分析合金内部位错密度的变化规律及其对力学性能的影响。结果 随着前期轧制温度从350 ℃升高到400 ℃,合金晶粒得到明显细化,再结晶充分,晶粒尺寸细小,晶界处第二相粗大;冷轧后晶粒破碎严重,晶粒的碎化方向与轧制方向垂直;在350 ℃时,合金内部的位错密度为1.62×1015 m?2,位错密度对强度的贡献值为219.5 MPa,其抗拉强度最大为602 MPa、屈服强度为512 MPa、伸长率为12.6%。结论 Al?4.5Cu?1.5Mg?0.5Zr合金的晶粒组织明显细化,其力学性能得到提升。  相似文献   

12.
采用真空感应熔炼方法制备了半导体用NiCr溅射靶,并对其开展不同变形量下的热轧,分析了NiCr合金受到热轧作用后发生的组织形态变化与磁性能改变。研究结果表明:NiCr合金中形成了呈现面心立方结构的镍基固溶体,合金受到热轧作用后发生了晶粒明显细化现象。随着热轧变形量的逐渐增大,(101)晶面择优取向程度先提高后减小,在热轧阶段组织晶粒发生了转动。随着热轧变形增加,观察到位错出现在晶粒内,部分区域发生了位错的相互缠结,晶粒内形成了小角度晶界。热轧后的试样在磁滞回线中心部位存在更多数量的磁滞回线,增大了矫顽力和剩余磁感应强度。随着热轧变形程度的提高,合金矫顽力Hc随之提高,获得更高磁透率,而剩磁Br先逐渐增大后减小,当热轧变形程度达到10%时,Br出现了迅速增大,之后Br不断下降。  相似文献   

13.
采用Gleeble-1500D热力模拟试验机研究新型Al-Zn-Mg-Cu高强铝合金在变形温度为300~450℃,应变速率为0.001~10s~(-1)条件下的热变形组织演化。利用光学显微镜(OM)和透射电子显微镜(TEM)观察合金不同热变形条件下的组织形貌特征。结果表明:随着变形温度的升高和应变速率的减小,位错密度减小,亚晶粒尺寸增大;合金热压缩变形过程中主要的软化机制为动态回复和动态再结晶。变形温度为300~400℃时,主要发生动态回复;变形温度为450℃,应变速率为0.001~10s~(-1)时,软化机制以动态再结晶为主,存在晶界弓出、亚晶长大、亚晶合并3种再结晶形核机制。  相似文献   

14.
室温ECAP和冷轧复合变形工业纯钛的组织和性能   总被引:3,自引:0,他引:3  
采用ECAP技术和常规冷轧复合变形工艺制备了高强度工业纯钛,研究了复合变形后试样的力学性能与显微组织的关系.结果表明,工业纯钛经室温单道次ECAP和冷轧复合变形后,晶粒被严重拉长,形成了明显的纤维状组织,试样的抗拉强度高达805MPa;随着冷轧变形量的增大,变形组织的细化程度和均匀性提高,使试样的强度和塑性进一步提高.位错滑移和孪生是工业纯钛室温ECAP和冷轧复合变形的主要变形机制.  相似文献   

15.
采用控温铸型连铸(temperature controlled mold continuous casting,TCMCC)技术制备C70250铜合金带坯,对带坯进行冷轧及不同温度和时间的时效处理,研究加工工艺与微观组织、力学性能及导电性能的关系,并揭示其机理。结果表明:TCMCC制备的C70250铜合金带坯具有粗大的柱状晶组织,横向晶界较少,经变形量97.5%的冷轧后形成了沿轧向的纤维条带状组织。当时效温度为450℃、时效时间为60min时,合金的抗拉强度为758MPa、导电率为54.5%IACS;与传统制备工艺相比,抗拉强度提高了5.3%,导电率提高了36.3%,实现了强度和导电率的同步提升。该条件下合金保留了纤维条带状组织并均匀析出了大量尺寸为6~10nm的Ni2Si相,通过加工硬化和Orowan强化共同作用提高了合金的强度;且溶质原子得到充分析出,横向晶界较少,显著提高了C70250铜合金的导电性能。  相似文献   

16.
研究了Al-10.78Zn-2.78Mg-2.59Cu-0.22Zr-0.047Sr铝合金挤压材在固溶-T652和预回复-固溶-T652时的组织和性能。结果表明:该合金在121℃×24h时效制度下,预回复退火处理可有效细化晶粒(从9.76μm减小到5.56μm),降低晶界平均角度(从23.59°降低至17.41°),显著提高低角度晶界百分比(从53%提高到67%),提高位错强化,并显著抑制再结晶的发生;与固溶-T652相比,预回复-固溶-T652工艺在不降低强度的情况下可提高其晶间和剥落腐蚀性能(最大晶间腐蚀深度从125.0μm减少到91.4μm,剥落腐蚀从EB级提高到EA级);在预回复-固溶-T652状态下合金的抗拉强度达到728MPa,预回复退火处理能提高合金的强度。位错强化和低角度晶界强化是合金的主要强化机制。  相似文献   

17.
采用晶间腐蚀、剥落腐蚀实验结合扫描、透射电镜等手段观察分析腐蚀后合金的微观形貌和相结构,研究了合金元素和热变形工艺对新型Al-Mg合金的抗晶间腐蚀和剥落腐蚀性能的影响。结果表明:随着Mg含量的增加合金在浓硝酸溶液中的腐蚀失重量增大,抗晶间腐蚀性能降低;合金中Zn含量的的提高导致在晶界上形成了不连续析出的Mg32(Al,Zn)49相,降低了合金的腐蚀失重量,提高了Al-Mg合金的抗晶间腐蚀性能。合金的抗腐蚀性能也受形变热处理工艺的影响,对冷变形后的合金进行适当的稳定化处理,相比单纯的冷变形可同时提高合金的抗晶间腐蚀性能与剥落腐蚀性能。冷变形后的残余应力、高位错密度以及拉长晶粒形貌都导致更多的析出相在晶界连续析出,形成网状膜,使合金的抗腐蚀性能降低。  相似文献   

18.
采用金相、扫描电镜、电子背散射衍射、透射电镜分析及拉伸性能实验等测试分析手段,研究了Al-Zn-Mg-Cu-Zr-0.5%Er合金型材的组织性能。结果表明,合金型材中的元素Er主要以未溶的Al8Cu4Er相形式存在,该粒子可以钉扎位错和晶界的迁移,有效抑制合金回复再结晶和晶粒长大,保持合金的变形态组织。0.5%Er的添加使得合金型材的强度降低,主要是因为合金型材中残留了大量的Al8Cu4Er相,在变形过程中由于位错塞积形成裂纹,降低了合金的强度。但是,合金的电导率有所提高。  相似文献   

19.
将Mg-1Al-0.4Ca-0.5Mn-0.2Zn(质量分数,%)合金在不同温度挤压,研究其微观组织和力学性能。结果表明:在260℃和290℃挤压的合金均发生不完全动态再结晶,再结晶晶粒尺寸分别为0.75 μm和1.2 μm。二者均具有高密度的G.P.区和球状纳米析出相,能抑制位错运动并为动态再结晶提供丰富的形核位点。沿晶界析出的纳米相能抑制晶界的运动和限制再结晶晶粒的生长,从而生成尺寸为0.75 μm的超细晶粒。随着挤压温度从260℃提高到290℃,合金的屈服强度从322 MPa提高到343 MPa,伸长率分别为13.4%和13%,没有明显的变化。挤压温度的提高促进了动态析出和动态回复,使合金中积累了高密度纳米盘状相和球状相,大量位错通过动态回复转变成小角度晶界,将未再结晶区域细分成密集的层状亚晶粒,二者均能抑制新位错的运动。这些因素,是在290℃挤压后的合金仍具有较高屈服强度和塑性没有明显变化的主要原因。纳米相对位错的钉扎在一定程度上限制了动态回复的发生,使合金中仍存在较高数量的残余位错,也有利于提高其屈服强度。  相似文献   

20.
为了获得具有高强、高导及良好抗高温软化性能的铜合金,用机械合金化法制备了Cu-0.5%Nb纳米弥散强化铜合金.采用力学、电学性能测量、金相、透射电镜观察对该合金退火行为进行了研究.研究表明:随着退火温度的升高,合金硬度呈下降趋势,在900 ℃以下退火以回复过程为主.该合金相对电导率随退火温度升高而升高,400 ℃时达到峰值89%IACS;随后不断降低,到800℃时由于Nb的回溶量增加,其降低速率开始加快.TEM观察表明,该合金冷轧态位错密度很高,随退火温度升高不断降低.纳米Nb粒子可强烈阻碍晶界和位错运动,900 ℃退火后基体仍以亚晶组织为主,合金抗高温软化性能较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号