首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recovery of H2 from H2S is an economical alternative to the Claus process in petroleum and minerals processing industries. Previous studies [React. Kinet. Catal. Lett. 62 (1997) 55; Catal. Lett. 37 (1996) 167] have demonstrated that catalytic decomposition of H2S over bimetallic sulfide can proceed at relatively higher rates than over mono-metallic systems due to chemical synergism although conversions are still thermodynamically limited. In the present study, the performance of a catalytic membrane reactor containing a packed bed of Ru–Mo sulfide catalyst has been investigated with a view to improving H2 yield beyond the equilibrium ceiling. A system of differential equations describing the non-isothermal reactor model has been solved to examine the effect of important hydrodynamic and transport properties on conversion. The results were obtained using a Pt-coated Nb membrane tube as the catalytic reactor enclosed in a quartz shell cylinder. Reynolds number for shell and tube side (Res and Ret) as well as the modified wall Peclet number, Pem, dramatically affect H2S conversions. Membrane reactor conversion rose monotonically with axial distance exceeding the equilibrium conversion by as much as eight times under some conditions.  相似文献   

2.
The oxidative dehydrogenation of propane (ODHP) has been studied in a catalytic membrane reactor using either an ODHP catalyst (V---Mg---O or Ni based) supported on commercial porous alumina membranes, or a V---Mg---O catalyst bed enclosed in a zeolite membrane. No significant membrane effects were found on the macro-and mesoporous V---Mg---O and Ni membranes. In contrast, the zeolite microporous membrane revealed to be an effective gas barrier, allowing a marked increase in propene yields at low C3H8/O2 ratios under separate feeding configuration.  相似文献   

3.
Dehydrogenation of propane is studied in a high temperature packed bed catalytic membrane reactor with a hydrogen-selective silica membrane. The silica membrane is prepared by a two-step sol–gel process. The removal of hydrogen in the membrane reactor results in higher propane conversion and higher propene yields in comparison to an equivalent fixed-bed reactor. Unfortunately, as a result of the H2 removal coking is favoured in the membrane reactor. Therefore, the higher propene yields are found only for the first 100–120 min time on stream. However, the lower selectivity of the membrane reactor due to coking is compensated to some extend by a reduced hydrogenolysis. Two commercial dehydrogenation catalysts of different activity were tested in the membrane reactor: Cr2O3/Al2O3 and Pt–Sn/Al2O3. The two catalysts show a different activity, coking, and regeneration behaviour in the membrane-supported propane dehydrogenation.  相似文献   

4.
Low temperature steam reforming of methane mainly to hydrogen and carbon dioxide (CH4 + 2H2O → 4H2 + CO2) has been performed at 773 and 823 K over a commercial nickel catalyst in an equilibrium-shift reactor with an 11-μm thick palladium membrane (Mem-L) on a stainless steel porous metal filter. The methane conversion with the reactor is significantly higher than its equilibrium value without membrane due to the equilibrium-shift combined with separation of pure hydrogen through the membrane. The methane conversion in a reactor with an 8-μm membrane (Mem-H) is similar to that with Mem-L, although the hydrogen permeance through Mem-H is almost double of that through Mem-L. The amount of hydrogen separated in the reaction with Mem-H is significantly large, showing that the hydrogen separation overwhelms the hydrogen production because of the insufficient catalytic activity.  相似文献   

5.
张恒  王婷婷  聂毅  张香平  林维明 《化工学报》2014,65(5):1660-1666
采用SrFe0.6Cu0.3Ti0.1O3混合导体透氧膜组装成膜催化反应器,进行甲烷部分氧化制合成气反应,考察了反应温度、空速、催化剂粒径等条件的影响,并分析了反应气氛引起的透氧膜结构变化情况。结果表明,在膜反应器内,催化反应与透氧过程存在相互制约和相互促进的关系。在膜反应器内进行甲烷部分氧化反应后,透氧膜的两侧表面均发生蚀刻现象,结晶度显著降低,反应侧蚀刻现象较为严重,膜表面形成了疏松的多孔层,反应气氛使膜表面晶体结构发生了较大改变,Sr容易从钙钛矿结构中析出并与CO2结合形成SrCO3,Sr的析出导致组成不平衡,促进了钙钛矿结构分解及其他物相的产生。  相似文献   

6.
A two-dimensional nonisothermal mathematical model has been developed to simulate a tube-and-shell configuration, catalytic membrane reactor. The three-layer membrane consists of an inert large-pore support, an o2 semipermeable dense perovskite layer and a porous catalytic layer. The model is applied to the simulation of the partial oxidation or methane to syngas (oxyreforming). The membrane reactor simultaneously supplies oxygen to the catalytic reaction along the reactor length, and separates oxygen from the air feed, using a dense perovskite layer which is a mixed conductor, thus allowing rapid oxygen permeation without the use of an external circuit. Two configurations of catalytic membrane reactors are simulated, for both bench-scale and industrial-scale conditions. Comparisons are made to the conventional fixed-bed reactor, and to membrane reactors which are isothermal, adiabatic or wall-cooled. The simulation results imply that the temperature rise in exothermic partial oxidation reactions may be mitigated substantially by the use of a dense membrane reactor,  相似文献   

7.
Catalytic ozonation technology has attracted copious attention in water purification owing to its favorable oxidative degradation of pollutants and mitigation of membrane fouling capacity. However, its extensive industrial application has been restricted by the low ozone utilization and limited mass transfer of the short-lived radical species. Interlayer space-confined catalysis has been theoretically proven to be a viable strategy for achieving high catalytic efficiency. Here, a two-dimensional MnO2-incorporated ceramic membrane with tunable interspacing, which was obtained via the intercalation of a carbon nanotube, was designed as a catalytic ozonation membrane reactor for degrading methylene blue. Benefiting from the abundant catalytic active sites on the surface of two-dimensional MnO2 as well as the ultralow mass transfer resistance of fluids due to the nanolayer confinement, an excellent mineralization effect, i.e., 1.2 mg O3(aq) mg–1 TOC removal (a total organic carbon removal rate of 71.5%), was achieved within a hydraulic retention time of 0.045 s of pollutant degradation. Further, the effects of hydraulic retention time and interlayer spacing on methylene blue removal were investigated. Moreover, the mechanism of the catalytic ozonation employing catalytic ozonation membrane was proposed based on the contribution of the Mn(III/IV) redox pair to electron transfer to generate the reactive oxygen species. This innovative two-dimensional confinement catalytic ozonation membrane could act as a nanoreactor and separator to efficiently oxidize organic pollutants and enhance the control of membrane fouling during water purification.  相似文献   

8.
Haihui Wang  You Cong  Weishen Yang   《Catalysis Today》2005,104(2-4):160-167
A dense membrane tube made of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) was prepared by plastic extrusion from BSCF oxide synthesized by the complexing EDTA-citrate method. The membrane tube was used in a catalytic membrane reactor for oxidative coupling of methane (OCM) to C2 without an additional catalyst. At high methane concentration (93%), about 62% C2 selectivity was obtained, which is higher than that achieved in a conventional reactor using the BSCF as a catalyst. The dependence of the OCM reaction on temperature and methane concentration indicates that the C2 selectivity in the BSCF membrane reactor is limited by high ion recombination rates. If an active OCM catalyst (La-Sr/CaO) was packed in the membrane tube, C2 selectivity and CH4 conversion increased compared to the blank run. The highest C2 yield in the BSCF membrane reactor in presence of the La-Sr/CaO catalyst was about 15%, similar to that in a packed-bed reactor with the same catalyst under the same conditions. However, the ratio of C2H4/C2H6 in the membrane reactor was much higher than that in the packed-bed reactor, which is an advantage of the membrane reactor.  相似文献   

9.
Membrane catalytic combustion (MCC) is an environmentally friendly technique for heat and power generation from methane. This work demonstrates the performances of a MCC perovskite hollow fibre membrane reactor for the catalytic combustion of methane. The ionic–electronic La0.6Sr0.4Co0.2Fe0.8O3− (LSCF6428) mixed conductor, in the form of an oxygen-permeable hollow fibre membrane, has been prepared successfully by means of a phase-inversion spinning/sintering technique. For this process polyethersulfone (PESf) was used as a binder, N-methyl-2-pyrrollidone (NMP) as solvent and polyvinylpyrrolidone (PVP, K16-18) as an additive. With the prepared LSCF6428 hollow fibre membranes packed with catalyst, hollow fibre membrane reactors (HFMRs) have been assembled to perform the catalytic combustion of methane. A simple mathematical model that combines the local oxygen permeation rate with approximate catalytic reaction kinetics has been developed and can be used to predict the performance of the HFMRs for methane combustion. The effects of operating temperature and methane and air feed flow rates on the performance of the HFMR have been investigated both experimentally and theoretically. Both the methane conversion and oxygen permeation rate can be improved by means of coating platinum on the air side of the hollow fibre membranes.  相似文献   

10.
The impact of oxygen permeability using an ionic oxygen conducting membrane reactor with surface catalyst was investigated for the oxidative coupling of methane to higher hydrocarbons. Dense Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO), Ba0.5Sr0.5Mn0.8Fe0.2O3−δ (BSMFO) and BaBi0.4Fe0.6O3 (BBFO) membrane disks with Pt/MgO catalysts were prepared by sol–gel deposition or wash-coating. It is demonstrated that the oxygen supply by permeation needs to fit to the consumption during the coupling reaction. In case of insufficient oxygen supply comparably poor conversions are observed while higher oxygen fluxes lead to increased methane conversions, especially in the presence of an efficient catalyst. Generally, increasing catalytic activity leads to lower C2 selectivity, especially for low oxygen permeation fluxes. The concept of a reactor employing dense catalytic membranes is viable, but the present study identifies further potential when the activity of the catalyst for the oxidative coupling is improved, leading to an overall enhanced performance of the membrane reactor.  相似文献   

11.
A metal ions (Ag, Bi, V, Mo) modified sol–gel method was used to prepare a mesoporous Ag0.01Bi0.85V0.54Mo0.45O4 catalytic membrane which was used in the selective oxidation of propane to acrolein. By optimizing the preparation parameters, a thin and perfect catalytically active membrane was successfully prepared. SEM results showed that the membrane thickness is 5 μm. XRD results revealed that Ag0.01Bi0.85V0.54Mo0.45O4 with a Scheelite structure, which is catalytically active for the selective oxidation of propane to acrolein, was formed in the catalytic membrane only when AgBiVMoO concentrations were higher than 40%. Catalytic reaction results demonstrated that the selective oxidation of propane could be controlled to a certain degree, such as to acrolein, in the catalytic membrane reactor (CMR) compared to the fixed bed reactor (FBR). For example, a selectivity of 54.85% for acrolein in the liquid phase was obtained in the CMR, while only 8.31% was achieved in the FBR.  相似文献   

12.
A mesoporous membrane for selective separation of hydrogen was prepared usingthe sol-gel method. Some metal salts such as RuCl3, Pd(NH3)4Cl2, RhCl3,, and H 2PtCl6, were added to the boehmite sol and coated on a porous alumina substrate before firing at 500°C. It was foundthat the permeability of hydrogen and the separation factor for a hydrogen-nitrogen gaseous mixture of these metaldispersed membranes exceeded the limitations of the Knudsen diffusion mechanism. Although the gas permeation through a neat alumina membrane is governed by the Knudsen diffusion, the metals dispersed in alumina membranes were effective in promoting hydrogen permeation. These metaldispersed alumina membranes were also used in a membrane reactor for methane steam reforming at low temperature. In the temperature range of 300 to 500°C, the membrane reactor attained a methane conversion twice as high as the equilibrium value of the packed bed catalytic reactor system as a result of the selective removal of hydrogen from the reaction system.  相似文献   

13.
The methane reforming with CO2 seems to be a promising reaction system useful to reduce the greenhouse contribution of both gases into the atmosphere. On this basis, and considering the potentiality of this reaction system, the dry reforming reaction has been carried out in an Ru-based ceramic tubular membrane reactor, in which two Ru depositions have been performed using the co-condensation technique. Experimental results in terms of CH4 and CO2 conversion versus temperature during time are presented, as well as product selectivity and carbon deposition. These experiments have also been carried out using a traditional reactor. A comparison with literature data regarding dry reforming reaction is also provided. Experimental evidence points out a good catalyst activity for the methane dry reforming reaction, confirming the potentiality of a catalytic membrane applied to the reaction system.  相似文献   

14.
The catalytic oxidation of unsymmetrical dimethylhydrazine (UDMH) by air has been studied in a vibro-fluidized catalyst bed laboratory kinetic setup over catalysts CuxMg1−xCr2O4/γ-Al2O3, 32.9%Ir/γ-Al2O3 and β-Si3N4 in a temperature range 150–400 °C. The catalyst CuxMg1−xCr2O4/γ-Al2O3 was found to be optimal regarding high yields of CO2 and low yields of NOx. A probable mechanism of UDMH heterogeneous catalytic oxidation is proposed. Catalyst CuxMg1−xCr2O4/γ-Al2O3 has been further used in the pilot plant specially designed for the destruction of UDMH. Results of testing the main fluidized bed catalytic reactor for UDMH oxidation and the reactor for selective catalytic reduction of NOx with NH3 are presented. These results prove that the developed UDMH destruction technology is highly efficient and environmentally safe.  相似文献   

15.
Superacid-supported catalytic membranes were found to be active and very selective in the partial oxidation of light paraffins (C1–C2) with H2O2 under mild conditions (TR: 80–110°C; PR: 1.4 bar) in a three-phase catalytic membrane reactor (3PCMR). Among different catalytic membranes investigated, Nafion-based ones showed the best performance in terms of both activity and selectivity. Addition of Fe2+ ions in the liquid phase enhances the reaction rate, however, a volcano-shaped trend between reaction rate and concentration of Fe2+ was observed. Reaction temperature drastically affects both reaction rate and product distribution. A reaction pathway based on the electrophilic hydroxylation of the C–H bond on superacid sites and subsequent reaction of the activated paraffin with OH radicals has been proposed.  相似文献   

16.
A disk-type Sm0.4Ba0.6Co0.2Fe0.8O3 − δ perovskite-type mixed-conducting membrane was applied to a membrane reactor for the partial oxidation of methane to syngas (CO + H2). The reaction was carried out using Rh (1 wt%)/MgO catalyst by feeding CH4 diluted with Ar. While CH4 conversion increased and CO selectivity slightly decreased with increasing temperature, a high level of CH4 conversion (90%) and a high selectivity to CO (98%) were observed at 1173 K. The oxygen flux was increased under the conditions for the catalytic partial oxidation of CH4 compared with that measured when Ar was fed to the permeation side. We investigated the reaction pathways in the membrane reactor using different membrane reactor configurations and different kinds of gas. In the membrane reactor without the catalyst, the oxygen flux was not improved even when CH4 was fed to the permeation side, whereas the oxygen flux was enhanced when CO or H2 was fed. It is implied that the oxidation of CO and H2 with the surface oxygen on the permeation side improves the oxygen flux through the membrane, and that CO2 and H2O react with CH4 by reforming reactions to form syngas.  相似文献   

17.
针对丙烷高效脱氢制丙烯的多孔膜反应器构建了无量纲数学模型并进行了模拟研究,考察了催化剂活性、透氢膜性能、操作条件对多孔膜反应器中丙烷脱氢的转化率、丙烯收率、氢气收率和纯度的影响。结果表明,移走产物氢气可以有效提升膜反应器的性能,其性能的提升程度由不同温压条件下催化剂和透氢膜性能共同决定。高活性催化剂是丙烷高效转化的基础,催化剂活性越高,膜反应器内的产氢速率越快;其次,膜的选择性和渗透通量越高,氢气的移除效率越高,可在最大程度上打破热力学平衡的限制,使反应向生成丙烯的方向移动。当多孔透氢膜的氢气渗透率在10-7~10-6 mol·m-2·s-1·Pa-1,H2/C3H8选择性达到100时,其丙烷转化率可以与Pd膜反应器内的转化率相当,但分离的氢气纯度低于Pd膜反应器。与传统的固定床反应器相比,膜反应器由于促进了化学平衡的移动,可以在较低的反应温度下获得相当高的丙烷转化率,且丙烷转化率随着反应压力的增加呈现出一个最大值。该模拟研究可为实际生产过程中膜反应器用于PDH反应的高效强化提供有益的技术指导。  相似文献   

18.
以多孔钛片为支撑体,制备了SO2-4/TiO2固体超强酸薄膜化催化剂。在膜催化器上,考察了薄膜化催化剂对乙醇和乙酸合成乙酸乙酯的催化性能。结果表明,薄膜化催化剂显著提高了催化活性;当n(乙醇)∶n(乙酸)=1.5∶1、 原料流量3.0 mL·h-1和反应温度为110 ℃时,乙酸乙酯收率达94.8%;用后薄膜催化剂的处理很方便,催化剂再生后可重复使用,对环境无污染。  相似文献   

19.
A gas chromatographic reactor in which both catalytic and chromatographic functions are combined has been used in conjunction with pulse techniques to study the enhancement of yields by equilibrium displacement and the reduction in the consumption of primary products through secondary reactions. Fluid logic injection devices have been used to produce short duration pulses of reactants. Good evidence for yield enhancement in the equilibrium, c-C6H12 C6H6+3H2, has been obtained from the effects on the degree of conversion to benzene of flow rate, bed length, carrier gas composition, and pulse duration. Crotonaldehyde has been found as a major product from the oxidation of but-1-ene by pulses of O2 over a silver catalyst and the sensitivity of the yields to experimental parameters suggests that the oxidation of the aldehyde is reduced by separating the primary product from the reactant pulse in the reactor bed.  相似文献   

20.
A catalytic jet-stirred reactor (CJS reactor) has been developed to investigate the interaction between gas-phase and surface reactions for the oxidative coupling of methane. This reactor allows the modification of the number of catalyst pellets (La2O3) for a fixed gas-phase volume. It permits also to set different temperatures for the gas-phase volume and the catalyst. The results of these ‘nonisothermal’ experiments are presented; they suggest that the contribution of the gas-phase reactions is rather significant and that the C2+ selectivity is improved by an increase of the gas-phase temperature up to 850°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号