首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some progress of research on bonded Nd-Fe-B magnets in National University of Defense Technology(NUDT) is presented in this paper. The contents include B-rich R2Fe14B-based nano composite with good performance; a model to determine of the least amount of binder; resin for high temperature application; resin encapsulating magnetic powders for long-term storage; thermoplastic polymer used for mold-pressing magnets; hybrid bonded Nd-Fe-B/Sm2Co17 magnet with a potentially useful improvements in remanence and magnetic energy product.  相似文献   

2.
In present study, sintered Nd-Fe-B permanent magnets with different compositions were fabricated by using both Spark Plasma Sintering (SPS) technique and conventional sintering technique. Microstructure and compositions of both magnets are observed by scanning electron microscope with energy dispersive X-ray detector. Magnetic properties, mechanical properties, and chemical stabilities of both Nd-Fe-B magnets are investigated. Compared with the conventional sintered magnets, SPS Nd-Fe-B magnets possess comparable magnetic properties, better corrosion resistance and mechanical properties. Further investigation shows that the good all-around properties of the SPS magnets result from their unique microstructure. In detail, the grain size of Nd2Fe14B main phase is fine and uniform, only a few Nd-rich phase forms along the grain boundaries of Nd2Fe14B, while most of them agglomerates into the triple junctions. As a result, SPS process is expected to be a promising method for the production of new Nd-Fe-B magnets with good all-around properties.  相似文献   

3.
The influence of Ce-Co alloy addition and sintering holding time on permanent magnetic properties and micro structure of nanocrystalline Nd-Fe-B bulk alloy were investigated.The coercivity of Nd-Fe-B bulk alloy can be enhanced greatly by more than 100% after adding Ce-Co powders.However,when the concentration of Ce-Co is up to 30 wt%,the density of the magnet can reach the maximum value of 7.58 g/cm~3,but the coercivity does not increase significantly.On the other hand,with the increase of holding time to 10 min,the density and coercivity of magnets increase gradually,reaching up to 7.55 g/cm~3 and 1134.3 kA/m,respectively.After the addition of Ce-Co alloy,Ce-Co may easily diffuse into the Nd-Fe-B matrix during hot-pressing and under the high pressure and temperature,thus increasing the content of grain boundary phase and the pinning effect of grain boundary,which leads to the increase of coercivity.The extension of the hot-pressing holding time may be more conducive to the diffusion of CeCo into the Nd-Fe-B matrix.In addition,the effect of Ce-Co addition on the magnetic properties of Nd-FeB with different content of rare earth was also studied.The addition of Ce-Co can effectively increase the coercivity of nanocomposite Nd_2 Fe_(14)B/α-Fe magnets.The addition of Nb to the parent alloy can further improve the coercivity.For Nd_(11)Fe_(81.5)Nb_1 Ga_(0.5)B_6 alloy with 10 wt% Ce-Co addition,the coercivity can increase from 740.28 to 1098.48 kA/m.  相似文献   

4.
After experimental evidence of intergrain exchange coupling was reported, nanocomposite magnets with high remanence and large energy products were predicted. However, the experimental values of the maximum magnetic energy product of nanocomposite bulk magnets have been much less than the theoretically predicted ones. We gave a brief review on advances in multilayer magnets. The exchange coupling and remanence enhancement were realized in nanocomposite (Nd,Dy)(Fe,Co,Nb,B)5,5/α-Fe thin films prepared by sputtering and heat treatments. Well-designed multilayer films consist of magnetically hard Nd2Fe14B-type phase with the grain size of 40 nm and magnetically soft α-Fe phase existing in the form of the continuous layers. Furthermore, we reported the structural and magnetic properties of anisotropic Nd-Fe-B thin films. The effects of thickness, deposition rates, substrate temperature, annealing temperature were studied. A high maximum energy product of (BH)max = 270 kJ/m3 was obtained for anisotropic Nd-Fe-B thin films.  相似文献   

5.
Anisotropic Sm2Co17 flakes with high aspect ratio were prepared by magnetic field assisted high energy ball milling in the presence of heptane and oleic acid(OA).The thickness of flakes was only tens of nanometers.Coercivity of 3 kOe was achieved in the nano-flakes.Most interestingly,the magnetic crystalline anisotropy of Sm2Co17 flakes was improved compared to that of particles made by traditional ball milling.These anisotropic Sm2Co17 nano-flakes could be the building blocks for the future high-performance nano-composite permanent magnets with an enhanced energy product.  相似文献   

6.
A hybrid magnet was prepared by the hot-pressing and die-upsetting of the mixture of the R-rich NdxFe93.5–xGa0.5B6 (x= 13.5 and 11.8) alloy and the R-lean NdxFe93–xNb1B6 (x = 6, 9) alloy melt-spun ribbons. The microstructure and magnetic properties of the hybrid magnet were investigated. In the hot-pressed or die-upset hybrid magnet the R-rich and R-lean alloy regions existed independently without alloying between them. The two alloy regions in the die-upset hybrid magnet were coupled effectively via a magnetostatic interaction. A texture was developed only in the R-rich Nd2Fe14B single phase alloy region in the die-upset hybrid magnet, and this led to an anisotropic nature in die-upset hybrid magnet. The die-upset hybrid magnets containing higher Nd-content (13.5 at%) host alloy shows consistently a better magnetic alignment with respect to the magnets with lower Nd-content (11.8 at%) host alloy.  相似文献   

7.
The processing method of anisotropic Nd-Fe-B magnets, based on rapid solidification of a molten alloy, followed by hot pressing and die-upset forging is currently well established and commonly used for the processing of high performance magnets. In this method uniaxial stress, created in an isotropic, polycrystalline alloy, leads to texture formation with the crystallographic c axis, of the tetragonal structure in each grain, being parallel, to the deformation direction (DD). However, the mechanisms leading to the anisotropic structure and accompanying processes are still not fully understood. In this study the Fe73.7Nd13.6Co6.6Ga0.6B5.5 alloy, after rapid solidification by melt spinning and hot pressing was subjected to die-upset forging with strains 30% and 65%, respectively. Systematic studies of the structure, microstructure and magnetic domain structure versus processing parameters were performed for this alloy, using magnetic measurements, transmission electron microscopy and atomic force microscopy.  相似文献   

8.
An analytical field ion microscope was applied to melt-spun NdFeB magnets with various cobalt substitutions. The microstructure of melt-spun NdFeB magnets consists of three phases. Whereas the Nd2Fe14B- and the metastable Nd7Fe3-phase determine the magnetic properties of optimally quenched specimens the Nd1.1Fe4B4-phase additionally influences the magnetic behaviour of overquenched and annealed material. With Co substitution the Nd-rich phase transforms via the metastable Nd23(Fe1−xCox)75B2 intermediate stage of optimally quenched specimens to the stable Nd(Fe1−xCox)2-phase in over-quenched and annealed ribbons. From our experimental data we conclude that a nucleation model of coercivity is consistent with the magnetic measurements.  相似文献   

9.
The Fe_(69.5-x)Nd_7 B_(21)Nb_(2.5)Ga_x(x = 0-1)permanent magnets in the form of rods were prepared by annealing the bulk amorphous alloys.The magnetic properties,phase evolution and microstructure of the alloys were investigated systematically.It is found that the glass forming ability(GFA), microstructure and magnetic properties are sensitive to Ga content for Fe_(69.5-x)Nd_7 B_(21)Nb_(2.5)Ga_x(x = 0-1)bulk alloys.The annealed alloys are mainly composed of soft α-Fe,hard Nd_2 Fe_(14)B and nonmagnetic Nd_(1.1)Fe_4 B_4 phases.When x = 0.3,the optimally annealed magnets exhibit magnetic properties of the remanence Br = 0.63 T,intrinsic coercivity H_(cj) = 368.68 kA/m and maximum energy product(BH)_(max) = 33.73 kJ/m~3.Furthermore,magnetic field heat treatment at the temperature close to Curie temperature of Nd_2 Fe_(14)B phase was applied to the annealed Fe_(69.2)Nd_7 B_(21)Nb_(2.5)Ga_(0.3) magnet.The results of X-ray diffraction(XRD)and transmission electron microscopy(TEM)indicate that the magnetic field heat treatment can be beneficial for the precipitation of α-Fe.Thus,the B_r,H_(cj) and(BH)_(max) are enhanced by 8.7%,6.3% and 16.3%,respectively.  相似文献   

10.
To improve the coercivity and temperature stability of Nd-Fe-B sintered magnets for high-temperature applications, the eutectic Tb80Fe20 (wt%) alloy powders were added into the Nd-Fe-B sintered magnets by intergranular method to enhance the coercivity (Hcj) and thermal stability. The microstructure, magnetic properties and thermal stability of the Nd-Fe-B magnets with different Tb80Fe20 contents were studied. The experimental results demonstrate that the coercivity (Hcj) of the sintered Nd-Fe-B magnet is significantly enhanced from 14.12 to 27.78 kOe, and the remanence (Br) decreases not obviously by introducing 4 wt% Tb80Fe20 alloy. Meanwhile, the reversible temperature coefficients of coercivity (β) and remanence (α) of the Nd-Fe-B magnets are increased from ?0.5634%/℃ to ?0.4506%/℃ and ?0.1276%/℃ to ?0.1199%/℃ at 20–170 ℃, respectively. The Curie temperature (TC) of the Nd-Fe-B magnet is slightly enhanced with the increase of Tb80Fe20 content. Moreover, the irreversible flux magnetic loss (hirr) is obviously reduced as Tb80Fe20 addition increases. Further analysis of the microstructure reveals that a modified microstructure, i.e. clear and continuous RE-rich grain boundary layer, is acquired in the sintered magnets by introducing Tb80Fe20 alloy. The associated mechanisms on improved coercivity and thermal stability were comprehensively researched.  相似文献   

11.
Behavior of the coercivity of the high-temperature Sm(Co_(0.88-x)Fe_xCu_(0.09)Zr_(0.03))_7 magnets depending on the temperature and time of annealing with the temperature decreasing stepwise from 700 to 400℃ was investigated.It is shown that the growth rate of coercivity abruptly increases at the initial stage of annealing in the vicinity of the Curie temperature of the SmCo_5 phase.The origin of the effect is the counter diffusion of Cu and Co atoms through dislocation tubes,which form because of enhanced stresses and a partial breakage of coherent coupling at the interface of the Sm_2 Co_(17) and SmCo_5 phases.Diffusive enrichment of the SmCo_5 phase in Cu close to the interface with Sm_2 Co_(17) leads to relaxation of stresses and increases in the gradient of the magnetic domain-wall energy and coercivity.  相似文献   

12.
In the paper, we summarize the USA research activities in the past two years on high performance rare earth (R)-based (nano) composite, nanostructured and hybrid permanent magnets. The work discussed is organized in three major sections (i) isotropic magnets based on the R2Fe14B hard phase, (ii) anisotropic magnets based on the R2Fe14B hard phase and (iii) magnets with a R-Co hard phase (1:5 and/or 2:17), including ultrahigh temperature Sm-Co magnets, Sm-Co permanent magnets with almost zero reversible temperature coefficient of residual induction for critical applications and ultrahigh temperature Sm-Co magnets with small reversible temperature coefficient of residual induction.  相似文献   

13.
In this article,the Sm2Co7/α-Fe nanocomposite magnets were prepared by high energy ball milling and spark plasma sintering method.The effect of soft phase content on the magnetic properties was studied.Up to 30 wt% α-Fe was added into Sm2Co7 matrix without the decrease of remanence.Optimal energy product(BH)max of 9.2 MGOe was obtained with 20 wt% α-Fe.TEM observation shows that the grain size of α-Fe is 20-50 nm which ensures a good coupling effect between soft and hard phase.One more thing needs to be mentioned is that there exists inter-diffusion between Sm-Co phase and α-Fe phase.Moreover,our results can also illustrate that the Sm2Co7/α-Fe nanocomposite magnets are able to acquire better magnetic properties than the SmCo5/α-Fe magnets prepared by the same process due to the large domain width of Sm2Co7 phase.  相似文献   

14.
Rare earth permanent magnets have a wide range of magnetic properties to meet the requirements of an extensive variety of applications. Sintered Sm2Co17-type magnets have the best thermal stability with high magnetic performance at temperatures up to 550 °C. Sintered NdFeB magnets have the highest maximum energy product, (BH)max, but are limited to applications with relatively low operating temperatures. Bonded magnets offer some design flexibility at the expense of magnetic properties. In view of these complexities, it is very important to understand the critical factors when designing the magnetic circuit. Using design examples based on finite element analysis (FEA), we will discuss magnetic materials selection, magnetic circuit design principles and design trade-offs for various applications.  相似文献   

15.
Rare Earth-Transition Metal permanent magnet films were epitaxially grown by pulsed laser deposition on heated MgO single crystal substrates of different orientations. The epitaxial growth relation of film, buffer and substrate is studied by pole figure measurements and its consequences on the anisotropic magnetic behavior are discussed. In the investigated material systems, RCo5 (R = Sm, Pr) and Nd-Fe-B, high anisotropies and coercivities are achieved, the film morphology, domain structure and the coercivity mechanism are, however, distinctly different. The small scaled domain structure found for SmCo5 and PrCo5 films is a consequence of the small grain sizes and the magnetization process is dominated by strong pinning. Nd2Fe14B based films, on the other hand, are nucleation type magnets and coercivity is influenced by film morphology and roughness.  相似文献   

16.
Bonded and fully-dense magnets prepared from melt-spun RE2Fe14B-type powders continue to find new applications in consumer electronics, automotive and industrial motors. The unique nanostructure of these materials promotes high magnetic performance, environmental stability and near-net shape formability. This article reviews the various types of melt spun powder from a compositional and microstructural standpoint. The powder with best overall performance and stability for bonded magnets appears to be the RE2Fe14B single phase type. Additional corrosion resistance can be achieved by coating the powder with an organic micro-dispersion prior to molding. Regarding higher performance fully dense magnets, multi-phase RE2Fe14B/RE melt spun powder offers a highly flexible precursor for hot forming near-net shape isotropic and anisotropic magnets. The composition of the melt spun powder along with the degree of hot deformation can be tailored to provide a range of magnetic properties from these types of magnet.  相似文献   

17.
Combined studies of hard magnetic Nd2Fe14B/α-Fe nanocomposites are performed. They were prepared by mechanical alloying of melt-quenched Nd7.4Pr2.0Fe76.6Co4.2Zr3.4B6.4 and Nd5.8Fe80Co4.9Ti1.5Si2.5B5.3 alloys taken in mass proportions of 90/10 and 70/30. It is found that, after mechanical alloying, an amorphous–crystalline structure is formed; it consists of the hard magnetic Nd2Fe14B and soft magnetic (amorphous and α-Fe) phases. Subsequent annealing at ~500°C initiates the decomposition of the amorphous phase and the formation of the nanocrystalline Nd2Fe14B and α-Fe phases. This leads to an increase in the coercivity and the residual magnetization-to-saturation magnetization ratio (σrs ≥ 0.5). It is assumed that the magnetic hardening of powders is due to the formation of an exchange-coupled state, which results from the exchange interaction between α-Fe nanocrystals and the Nd2Fe14B phase.  相似文献   

18.
The phase composition, magnetic properties i.e. coercivity and the magnetic polarization at room temperature for the bulk Fe67Co5Nd3Y6B19 and Fe64Co5Nd6Y6B19 alloys were studied. The bulk amorphous Fe67Co5Nd3Y6B19 alloy, inhomogeneous in the as-quenched state, crystallized after annealing at 948 K for 0.5 h and consisted of Nd2Fe14B-type, Fe2B and paramagnetic phases. The rapidly solidified Fe64Co5Nd6Y6B19 alloy contained the Nd2Fe14B-type and paramagnetic phases. The annealing of the bulk Fe67Co5Nd3Y6B19 alloy at 948 K for 0.5 h led to hard magnetic properties. However, the bulk Fe64Co5Nd6Y6B19 alloy exhibited good hard magnetic properties directly after preparation.  相似文献   

19.
We report microstructure,magnetocaloric effect and thermal transfer properties of highly orientated Nd_(0.8)Pr_(0.2)Co_5 alloy prepared by powder metallurgical processing.Two spin-reorientation transitions of easy magnetization direction,easy plane to easy cone at T_(SR1)=206 K,easy cone to easy axis at T_(SR2)=242 K,are observed.The present textured alloy exhibits a rotating entropy change of 2.6 J/(kg·K)and refrigerant capacity of 155 J/kg under a magnetic field of 2 T,and high thermal conductivity of 11 W/(m·K).The sintered Nd_(0.8)Pr_(0.2)Co_5 alloy with good combination of excellent magnetocaloric and thermal transfer properties are promising for scientific research and practical applications as room-temperature rotating magnetic refrigeration materials.  相似文献   

20.
In this paper, we systematically investigated the microstructure evolution and coercivity mechanism of hydrogenation-disproportionation-desorption-recombination (HDDR) treated Nd-Fe-B strip cast alloys by transmission electron microscopy (TEM) and three-dimensional atom probe (3DAP) analyses. The rod-like NdH2+x phases with diameters of 10–20 nm are embedded into α-Fe matrix, which hereditarily leads to textured grains in HDDR alloy. The migration of NdH2+x from Nd-rich region to α-Fe matrix during hydrogen absorption process contributes to the uniform redistribution of Nd-rich phases after HDDR treatment. The HDDR alloy with single domain grain sizes of 200–300 nm exhibits relatively low coercivity of 1.01 T that arises from pinning magnetic domain motion. The weak c-axis orientation of HDDR alloy results in a lower reverse magnetic field (coercivity) to reduce remanence to 0. Moreover, the direct contact of Nd2Fe14B grains and the high concentration of ferromagnetic elements (Fe content ≈ 66.06 at%, Co content ≈ 0.91 at%) in Nd-rich grain boundary layer lead to strong magnetostatic coupling effect among Nd2Fe14B grains. The nano-sized α-Fe inside Nd2Fe14B matrix makes the magnetization reversal easily and decreases the coercivity of HDDR alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号