首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Several 2D and 3D numerical models have been developed to investigate rolling contact fatigue (RCF) by employing a continuum damage mechanics approach coupled with an explicit representation of microstructure topology. However, the previous 3D models require significant computational effort compared to 2D models. This work presents a new approach wherein efficient computational strategies are implemented to accelerate the 3D RCF simulation. In order to reduce computational time, only the volume that is critically stressed during a rolling pass is modeled with an explicit representation of microstructure topology. Furthermore, discontinuities in the subsurface stress calculation in the previously developed models for line and circular contact loading are removed. Additionally, by incorporating a new integration algorithm for damage growth, the fatigue damage simulations under line contact are accelerated by a factor of nearly 13. The variation in fatigue lives and progression of simulated fatigue spalling under line contact obtained using the new model were similar to the previous model predictions and consistent with empirical observations. The model was then extended to incorporate elastic–plastic material behavior and used to investigate the effect of material plasticity on subsurface stress distribution and shear stress–strain behavior during repeated rolling Hertzian line contact. It is demonstrated that the computational improvements for reduced solution time and enhanced accuracy are indispensable in order to conduct investigations on the effects of advanced material behavior on RCF, such as plasticity.  相似文献   

2.
Rolling contact fatigue (RCF) is the dominant failure mode in properly installed and maintained ball and roller element bearings. Lundberg and Palmgren in their seminal publication indicated that this failure is due to the alternating component of shear stress. Thus, torsional fatigue experiments have been used to predict the RCF behavior of bearing materials. In non-conformal contacts, due to Hertzian pressure the contact experiences large compressive stresses. Hence, it is critical to take into account the effect of these large compressive stresses in torsional fatigue to better simulate RCF conditions. This paper presents an investigation of torsional fatigue of bearing steels, while the effects of combined compressive stress and its relevance to material behavior in rolling contact fatigue is examined. An MTS test rig was used to investigate the fatigue life of several bearing steels and their failure mechanisms were evaluated through fractography. Then the effects of compressive stresses on torsional fatigue were investigated. A set of custom designed clamp fixtures were designed, developed and used to apply Hertzian pressures of up to 2.5 GPa on the torsion specimens. The experimental results indicate that at high cycle fatigue, a combination of shear and biaxial compression, by application of Hertzian contact, is more detrimental to fatigue life than shear alone; however, as expected it has little to negligible effects in the low cycle fatigue regime. Also the failure mode changes such that fracture planes form a cup and cone pair with multiple internal cracks as opposed to helical planes observed in pure torsion which are formed by a single crack. A 3D finite element model (using ABAQUS) was developed to investigate the fatigue damage accumulation, crack initiation, and propagation in the material. The topology of steel microstructure is modeled employing a randomly generated Voronoi tessellation wherein each Voronoi cell represents a material grain and the boundaries between the cells are assumed to represent the weak plane in the steel matrix. Continuum damage mechanics (CDM) was used to model material degradation during the fatigue process. A comprehensive damage evolution equation is developed to account for the effect of mean stress on fatigue. The model predicts the fatigue lives and crack patterns successfully both in presence and absence of compressive stresses.  相似文献   

3.
Abstract

Evaluating new materials for rolling element bearings (REBs) is an expensive, time-consuming, and difficult process. This work presents a continuum damage mechanics (CDM)-based finite element model (FEM) that incorporates gradual material degradation under cyclic loading and discrete material representation to predict rolling contact fatigue (RCF) failure. The fully reversed orthogonal shear stress was considered the critical stress for the CDM RCF modeling. Torsional fatigue results available from the open literature were used to determine the critical parameters for CDM FEM. In contrast to previous modeling approaches, in this investigation the CDM material parameters were considered probabilistic in nature to represent variations in material strength or resistance to fatigue. This modification to the modeling procedure resulted in RCF life predictions that capture life scatter characteristic of the RCF phenomena for REBs. Based on the model results, a fatigue life equation was developed to corroborate the Lundberg and Palmgren (LP) theory. The results obtained from the predictive life equation generated from the CDM-based FEM using material parameters obtained from torsional fatigue results are in good agreement with the LP model.  相似文献   

4.
在复合材料层合板层间植入韧性层是提高复合材料韧性和抗冲击能力的有效方法。为了研究层间增韧对层合板损伤阻抗的改善作用,文中通过准静态压痕试验研究层间增韧复合材料在准静态压痕力下的损伤和破坏行为,利用超声C扫描测量分层损伤面积。试验结果表明,层间增韧复合材料具有较高的分层起始载荷和分层起始能量,损伤阻抗显著提高。在相同的载荷水平下,具有较小的分层损伤面积。文中还采用有限元方法对层间增韧复合材料在静压痕力下的分层和铺层失效进行数值分析,有限元计算结果与试验结果吻合较好。  相似文献   

5.
胶接接头中总存在胶瘤,由于建模复杂,胶接接头有限元分析中胶瘤常被忽略.但胶瘤能减少峰值应力,提高结构强度和刚度.为此,提出一种简化的胶接有限元模型,即用壳单元代表胶瘤,体单元代表被粘体和胶层,并用弹性理论建立壳单元等效厚度公式.以体单元精细模型结果作为对比的真实解,考察五种载荷工况下,单搭接头简化有限元模型的胶层应力和刚度.分析表明,壳单元等效厚度公式正确,胶接简化有限元模型精度高,可用于诸如汽车等大型结构中;用壳单元简单模型可定量分析胶瘤大小和形状对接头应力和总体刚度性能的影响.  相似文献   

6.
A numerical simulation of multi-stage heavy forging process using the finite element method (FEM) is presented in this study. The process of heavy forging is highly non-linear, where both microstructure and boundary conditions are altered by plastic deformation during forming. Therefore, it is necessary to understand the problem of plastic deformation in heavy forging. In order to investigate deformation behavior and microstructure evolution in heavy forging, a constitutive equation considering the effects of strain hardening and dynamic softening of the IN718 alloy is built. The constitutive equation and microstructure models are implemented into the finite element code to simulate deformation behavior and microstructure evolution in the rotary forging of heavy container head. As a result, variations of flow stress, effective strain, temperature, damage, and grain size in every stage are predicted.  相似文献   

7.
射频器件超细引线键合工艺及性能研究   总被引:1,自引:0,他引:1  
作为有源相控阵雷达的关键组成部分,T/R (Transmitter and receiver)组件的尺寸与性能决定着装备的重量和功能。引线键合是T/R组件中常用的互连技术之一,随着组件集成度的提高势必也要开发相应的高密度引线键合技术,这使得键合线的尺寸越来越小,而超细的引线会使焊点力学性能降低,造成可靠性下降等问题。采用超声热压楔形键合的方法实现了的超细金丝与金焊盘的连接,并对工艺进行优化。结果表明,随键合压力、键合时间和超声功率的增大,键合后引线形变量逐渐增大,而键合后金丝的拉力先增加后减小,且工艺参数对金带形变量的影响小于金丝;由于第二焊点作用力过大会导致引线形变量较大、最大拉力小于第一焊点,需增加题焊点数量;最后,通过正交试验方法获得了金线和金带的最佳键合工艺参数,实现了超细尺寸引线的键合,对T/R组件的小型化具有重要意义。  相似文献   

8.
Laminated and sandwich composites, which find applications as primary structures where weight saving is crucial, absorb energy through a variety of local failure modes. Since this damage accumulation could adversely affect the structural performances and the service life, an intensive research activity has been oriented towards suitable computational models. To support the optimization processes within the damage-tolerant design approach, low computational cost, refined zig-zag models and postprocessing procedures enabling the prediction of interlaminar stresses with the desired accuracy have been recently developed. In this paper, a 3D zig-zag plate model based upon the kinematics and nodal degrees of freedom of classical plate models, corresponding finite element and related postprocessing procedures are developed to efficiently and accurately predict ply level stresses in laminated and sandwich composites. To overcome the C2 continuity requirement for shape functions which results from enforcement of the continuity of interlaminar shear and normal stresses and of the transverse normal stress gradient at the layer interfaces, the higher-order energy contributions brought about by this model are incorporated through strain energy updating into a Co parent eight-node plate element based on the first-order shear deformation plate theory. This energy updating is made possible by the coinciding functional degrees of freedom of the two models. A postprocessing iterative procedure is developed to obtain the suited interdependent interpolation of displacement and stresses required for capturing interlaminar stresses at the ply level with the desired accuracy. The accuracy of the present element is assessed by comparing its predictions with the stress fields of the elasticity solution for a very thick, simply supported sandwich beam with laminated faces, loaded by a sinusoidal heap loading. In addition, a comparison is made with the predictions of a mixed solid element recently developed by the author, in terms of accuracy and costs by a discrete-layer model. To test the present element in a situation of practical use, the damage of stiffened panels undergoing impact loads is evaluated by different criteria and compared with that detected by ultrasonic inspection, the exact elasticity solution not being available in this case. The present element appears cost-effective and able to accurately predict the interlaminar stresses also when composites are thick, and suitable for predicting impact-induced damage.  相似文献   

9.
讨论了钛合金高温变形晶体塑性有限元模拟的研究进展,并分析了晶体塑性模型在钛合金细观尺度不均匀变形和组织演化方面的应用;围绕钛合金热成形过程变形与组织演变耦合模拟需求,讨论了钛合金高温成形统一黏塑性本构模型的发展过程,并介绍了统一黏塑性本构模型在钛合金热成形工艺的应用实例。统一黏塑性本构模型考虑了钛合金高温变形过程中回复、再结晶、相变、损伤等组织演变行为与宏观应力应变之间的耦合作用,为实现钛合金构件形状尺寸和组织性能的精确预测和成形工艺优化提供了有效的手段。最后分析了钛合金热成形工艺多尺度建模仍存在的问题,并展望了多尺度建模的发展趋势。  相似文献   

10.
11.
基于多尺度均匀化方法,以组分材料用量为约束,以等效弹性模量矩阵主对角线上分量的加权组合最大为目标,建立周期性复合材料微结构的多目标优化设计模型。利用优化准则法控制设计目标与材料分布,以敏度过滤技术抑制棋盘格效应,实现微结构的构型优化。研究比较微结构网格粗细、材料组分比对不同目标元素优化结果的影响。通过典型算例验证优化模型和优化算法的有效性。  相似文献   

12.
镍基单晶高温合金蠕变-疲劳寿命评估方法进展   总被引:3,自引:0,他引:3  
论述镍基单晶合金的滑移变形机制和疲劳裂纹萌生机理,分别介绍镍基单晶合金蠕变寿命和低循环疲劳寿命分析评估模型;镍基单晶合金蠕变、疲劳寿命的研究方法可分为应用各向异性张量描述非弹性各向异性变形的宏观力学(唯象)模型和基于晶体学滑移变形理论的微观力学模型;晶体取向、平均应力、环境温度、循环频率、循环应力比是影响单晶合金蠕变-疲劳寿命的主要因素。复杂应力状态下的单晶合金多轴低循环疲劳损伤,单晶合金在疲劳-蠕变交互作用下的疲劳损伤和单晶合金的接触疲劳损伤等问题是需要研究的重要课题。  相似文献   

13.
We have developed a numerical model of recrystallization taking the inhomogeneities of the plastic deformation of a polycrystalline metal into account. Here, the plastic deformation of the polycrystalline metal is simulated by the finite element method based on crystal plasticity theory and the microstructure evolution during recrystallization is simulated by the multi-phase-field method. In primary recrystallization simulations, nucleation is the most difficult problem. In the present model, the deformation microstructure is predicted from the results of a crystal plasticity finite element simulation, and spontaneous nucleation is achieved through abnormal grain growth that is enabled by introducing the misorientation dependences of grain boundary energy and mobility. As a result of simulations under three different compression strains, it is confirmed that primary recrystallization simulations depending on the amount of deformation and taking the inhomogeneities of the plastic deformation of a polycrystalline metal into consideration can be successfully performed by employing the proposed model.  相似文献   

14.
The rolling contact fatigue (RCF) performance of vibro-mechanical textured surfaces in a point elastohydrodynamic lubrication (EHL) condition is investigated. Two dimple designs, small (100 μ m × 100 μ m) and large (240 μ m × 100 μ m), are compared with a nontextured sample. Experimental RCF tests show that the textured surfaces exhibit a significantly reduced number of cycles to failure compared with the nontextured sample for the high load, pure rolling conditions evaluated. In order to understand these results, numerical models are used to calculate the lubrication and contact pressure conditions and the subsurface stress distribution. The fatigue failure trends observed experimentally are compared with the simulation results with good agreement. It is determined that RCF performance is related to the presence and size of the generated dimple.  相似文献   

15.
Rolling contact fatigue (RCF) issues, such as pitting, might occur on bevel gears because load fluctuation induces considerable subsurface stress amplitudes. Such issues can dramatically affect the service life of associated machines. An accurate geometry model of a hypoid gear utilized in the main reducer of a heavy-duty vehicle is developed in this study with the commercial gear design software MASTA. Multiaxial stress–strain states are simulated with the finite element method, and the RCF life is predicted using the Brown–Miller–Morrow fatigue criterion. The patterns of fatigue life on the tooth surface are simulated under various loading levels, and the RCF S–N curve is numerically generated. Moreover, a typical torque–time history on the driven axle is described, followed by the construction of program load spectrum with the rain flow method and the Goodman mean stress equation. The effects of various fatigue damage accumulation rules on fatigue life are compared and discussed in detail. Predicted results reveal that the Miner linear rule provides the most optimistic result among the three selected rules, and the Manson bilinear rule produces the most conservative result.  相似文献   

16.
Residual stresses are a consequence of thermo-mechanical and microstructural phenomena generated during the machining operation. Therefore, for improving product performance in machined hardened steels, material microstructure changes (commonly referred to as white and dark layers) must be taken into account. This paper presents a finite element model for white and dark layers formation in orthogonal machining of hardened AISI 52100 steel. In particular, a hardness-based flow stress and empirical models for describing the white and dark layers formation were developed and implemented in the finite element code. A series of experiments was carried out in order to validate the proposed simulation strategy and to investigate the influence of material microstructure changes on residual stresses. As main results, it was firstly demonstrated by surface topography analysis as both the white and dark layer are the result of microstructural alterations mainly due to rapid heating and quenching. Furthermore, it was found as both the presence of white and dark layers influence the residual stress profile. Particularly, the former significant impacts on the magnitude of maximum residual stress and on the location of the peak compressive residual stress; the latter reduces the compressive area.  相似文献   

17.
含圆形夹杂两相材料界面变形与损伤特性的数值模拟   总被引:2,自引:0,他引:2  
为模拟复合材料界面行为,利用界面破坏单元和有限元程序,对金属基复合材料Al基体含Al2O3圆形夹杂的界面破坏行为进行一系列的数值模拟,分别采用切向和法向耦合的界面弹簧单元SPRINGA和由自编的非实体四节点界面单元等模型;比较各种界面模型的差别。由计算结果可知,考虑界面层的计算模型比不考虑界面层时合理;采用破坏型界面层即在界面处加入破坏弹簧或非实体破坏单元的计算模型比仅加入一层实体界面层的计算模型合理;加入破坏型界面层时,界面层力学性质的描述与参数值的给定对计算结果有重要的影响。  相似文献   

18.
According to the distribution characteristics of equivalent plastic strain (PEEQ) in radial?Caxial ring rolling, the plastic deformation zones in cross section were established. A 3D rigid-viscoplastic finite element model (FEM) which was controlled adaptively was applied to investigate defects that occurred during ring rolling under ABAQUS software. PEEQ, stress, and temperature distributions in different deformation zones have been analyzed in this study. Strain peaks were found in the cross-section corners. Moreover, it was investigated that non-uniform strain, stress, and temperature distributions in the ring tend to cause non-uniform microstructure and properties. Therefore, forming defects and microstructure damage would appear in cross-section corners due to the high-strain deformation. Based on the new developed FEM of the radial?Caxial ring-rolling process and comprehensive numerical simulations, the size effects of feed rate and lubrication conditions on strain and temperature distributions and their uniformity were investigated by 3D coupled thermomechanical FE simulation. The results have good agreement with experiment. The achievements of this study can provide basis for quality control and technical guidance.  相似文献   

19.
The accumulated damage process of rolling contact fatigue (RCF) of plasma-sprayed coatings was investigated. The influences of surface roughness, loading condition, and stress cycle frequency on the accumulated damage status of the coatings were discussed. A ball-ondisc machine was employed to conduct RCF experiments. Acoustic emission (AE) technique was introduced to monitor the RCF process of the coatings. AE signal characteristics were investigated to reveal the accumulated damage process. Result showed that the polished coating would resist the asperity contact and remit accumulated damage. The RCF lifetime would then extend. Heavy load would aggravate the accumulated damage status and induce surface fracture. Wear became the main failure mode that reduced the RCF lifetime. Frequent stress cycle would aggravate the accumulated damage status and induce interface fracture. Fatigue then became the main failure mode that also reduced the RCF lifetime.  相似文献   

20.
A finite element based approach is used to simulate the evolution of low cycle fatigue damage in a turbine blade. The turbine blade is modelled as a rotating Timoshenko beam with taper and twist. A damage growth model for low cycle fatigue damage developed using a continuum mechanics approach is integrated with the finite element model. Numerical results are obtained to study the effect of damage growth on the rotating frequencies. It is found that low cycle fatigue causes sufficient degradation in blade stiffness for changes in rotating frequency to be used as an indicator to track damage growth. Continuum damage mechanics models in conjunction with finite element analysis are used to develop thresholds for damage indicators. By placing suitable threshold on the frequency change, it is possible to detect the onset of the final stage of damage in the structure before failure occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号