首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A vegetation index (VI) model for predicting evapotranspiration (ET) from data from the Moderate Resolution Imaging Spectrometer (MODIS) on the EOS-1 Terra satellite and ground meteorological data was developed for riparian vegetation along the Middle Rio Grande River in New Mexico. Ground ET measurements obtained from eddy covariance towers at four riparian sites were correlated with MODIS VIs, MODIS land surface temperatures (LSTs), and ground micrometeorological data over four years. Sites included two saltcedar (Tamarix ramosissima) and two Rio Grande cottonwood (Populus deltoides ssp. Wislizennii) dominated stands. The Enhanced Vegetation Index (EVI) was more closely correlated (r=0.76) with ET than the Normalized Difference Vegetation Index (NDVI; r=0.68) for ET data combined over sites and species. Air temperature (Ta) measured over the canopy from towers was the meteorological variable that was most closely correlated with ET (r=0.82). MODIS LST data at 1- and 5-km resolutions were too coarse to accurately measure the radiant surface temperature within the narrow riparian corridor; hence, energy balance methods for estimating ET using MODIS LSTs were not successful. On the other hand, a multivariate regression equation for predicting ET from EVI and Ta had an r2=0.82 across sites, species, and years. The equation was similar to VI-ET models developed for crop species. The finding that ET predictions did not require species-specific equations is significant, inasmuch as these are mixed vegetation zones that cannot be easily mapped at the species level.  相似文献   

2.
Evapotranspiration (ET) is a major pathway for water loss from many ecosystems, and its seasonal variation affects soil moisture and net ecosystem CO2 exchange. We developed an algorithm to estimate ET using a semi-empirical Priestley-Taylor (PT) approach, which can be applied at a range of spatial scales. We estimated regional net radiation (Rnet) at monthly time scales using MODerate resolution Imaging Spectroradiometer (MODIS) albedo and land surface temperature. Good agreement was found between satellite-based estimates of monthly Rnet and field-measured Rnet, with a RMSE of less than 30 W m− 2. An adjustable PT coefficient was parameterized as a function of leaf area index and soil moisture based on observations from 27 AmeriFlux eddy covariance sites. The biome specific optimization using tower-based observations performed well, with a RMSE of 17 W m− 2 and a correlation of 0.90 for predicted monthly latent heat. We implemented the approach within the hydrology module of the CASA biogeochemical model, and used it to estimate ET at a 1 km spatial resolution for the conterminous United States (CONUS). The RMSE of modeled ET was reduced to 21.1 mm mon− 1, compared to 27.1 mm mon− 1 in the original CASA model. The monthly ET rates averaged over the Mississippi River basin were similar to those derived using GRACE satellite measurements and river discharge data. ET varied substantially over the CONUS, with annual mean values of 110 ± 76 mm yr− 1 in deserts, 391 ± 176 mm yr− 1 in savannas and grasslands, and 840 ± 234 mm yr− 1 in broadleaf forests. The PT coefficient was the main driver for the spatial variation of ET in arid areas, whereas Rnet controlled ET when mean annual precipitation was higher than approximately 400 mm yr− 1.  相似文献   

3.
Improvements to a MODIS global terrestrial evapotranspiration algorithm   总被引:43,自引:0,他引:43  
MODIS global evapotranspiration (ET) products by Mu et al. [Mu, Q., Heinsch, F. A., Zhao, M., Running, S. W. (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111, 519-536. doi: 10.1016/j.rse.2007.04.015] are the first regular 1-km2 land surface ET dataset for the 109.03 Million km2 global vegetated land areas at an 8-day interval. In this study, we have further improved the ET algorithm in Mu et al. (2007a, hereafter called old algorithm) by 1) simplifying the calculation of vegetation cover fraction; 2) calculating ET as the sum of daytime and nighttime components; 3) adding soil heat flux calculation; 4) improving estimates of stomatal conductance, aerodynamic resistance and boundary layer resistance; 5) separating dry canopy surface from the wet; and 6) dividing soil surface into saturated wet surface and moist surface. We compared the improved algorithm with the old one both globally and locally at 46 eddy flux towers. The global annual total ET over the vegetated land surface is 62.8 × 103 km3, agrees very well with other reported estimates of 65.5 × 103 km3 over the terrestrial land surface, which is much higher than 45.8 × 103 km3 estimated with the old algorithm. For ET evaluation at eddy flux towers, the improved algorithm reduces mean absolute bias (MAE) of daily ET from 0.39 mm day−1 to 0.33 mm day−1 driven by tower meteorological data, and from 0.40 mm day−1 to 0.31 mm day−1 driven by GMAO data, a global meteorological reanalysis dataset. MAE values by the improved ET algorithm are 24.6% and 24.1% of the ET measured from towers, within the range (10-30%) of the reported uncertainties in ET measurements, implying an enhanced accuracy of the improved algorithm. Compared to the old algorithm, the improved algorithm increases the skill score with tower-driven ET estimates from 0.50 to 0.55, and from 0.46 to 0.53 with GMAO-driven ET. Based on these results, the improved ET algorithm has a better performance in generating global ET data products, providing critical information on global terrestrial water and energy cycles and environmental changes.  相似文献   

4.
Spatially distributed estimates of evaporative fraction and actual evapotranspiration are pursued using a simple remote sensing technique based on a remotely sensed vegetation index (NDVI) and diurnal changes in land surface temperature. The technique, known as the triangle method, is improved by utilizing the high temporal resolution of the geostationary MSG-SEVIRI sensor. With 15 min acquisition intervals, the MSG-SEVIRI data allow for a precise estimation of the morning rise in land surface temperature which is a strong proxy for total daytime sensible heat fluxes. Combining the diurnal change in surface temperature, dTs with an interpretation of the triangular shaped dTs − NDVI space allows for a direct estimation of evaporative fraction. The mean daytime energy available for evapotranspiration (Rn − G) is estimated using several remote sensors and limited ancillary data. Finally regional estimates of actual evapotranspiration are made by combining evaporative fraction and available energy estimates. The estimated evaporative fraction (EF) and actual evapotranspiration (ET) for the Senegal River basin have been validated against field observations for the rainy season 2005. The validation results showed low biases and RMSE and R2 of 0.13 [−] and 0.63 for EF and RMSE of 41.45 W m− 2 and R2 of 0.66 for ET.  相似文献   

5.
Evapotranspiration (ET) cannot be measured directly from satellite observations but remote sensing can provide a reasonably good estimate of evaporative fraction (EF), defined as the ratio of ET and available radiant energy. It is feasible to estimate EF using a contextual interpretation of radiometric surface temperature (To) and normalized vegetation index (NDVI) from multiple satellites. Recent studies have successfully estimated net radiation (Rn) over large heterogeneous areas for clear sky days using only remote sensing observations. With distributed maps of EF and Rn, it is now possible to explore the feasibility and robustness of ET estimation from multiple satellites. Here we present the results of an extensive inter-comparison of spatially distributed ET and related variables (NDVI, To, EF and Rn) derived from MODIS and AVHRR sensors onboard EOS Terra, NOAA14 and NOAA16 satellites respectively. Our results show that although, NDVI and To differ with the sensor response functions and overpass times, contextual space of NDVI-To diagram gives comparable estimates of EF. The utility of different sensors is demonstrated by validating the estimated ET results to ground flux stations over the Southern Great Plains with a root mean square error of 53, 51 and 56.24 Wm− 2, and a correlation of 0.84, 0.79 and 0.77 from MODIS, NOAA16 and NOAA14 sensors respectively.  相似文献   

6.
Surface chlorophyll a concentrations (Ca, mg m− 3) in the Southern Ocean estimated from SeaWiFS satellite data have been reported in the literature to be significantly lower than those measured from in situ water samples using fluorometric methods. However, we found that high-resolution (∼ 1 km2/pixel) daily SeaWiFS Ca (CaSWF) data (SeaDAS4.8, OC4v4 algorithm) was an accurate measure of in situ Ca during January-February of 1998-2002 if concurrent in situ data measured by HPLC (CaHPLC) instead of fluorometric (CaFluor) measurements were used as ground truth. Our analyses indicate that CaFluor is 2.48 ± 2.23 (n = 647) times greater than CaHPLC between 0.05 and 1.5 mg m− 3 and that the percentage overestimation of in situ Ca by fluorometric measurements increases with decreasing concentrations. The ratio of CaSWF/CaHPLC is 1.12 ± 0.91 (n = 96), whereas the ratio of CaSWF/CaFluor is 0.55 ± 0.63 (n = 307). Furthermore, there is no significant bias in CaSWF (12% and − 0.07 in linear and log-transformed Ca, respectively) when CaHPLC is used as ground truth instead of CaFluor. The high CaFluor/CaHPLC ratio may be attributed to the relatively low concentrations of chlorophyll b (Cb/Ca = 0.023 ± 0.034, n = 482) and relatively high concentrations of chlorophyll c (Cc/Ca = 0.25 ± 0.59, n = 482) in the phytoplankton pigment composition when compared to values from other regions. Because more than 90% of the waters in the study area, as well as in the entire Southern Ocean (south of 60° S), have CaSWF between 0.05 and 1.5 mg m− 3, we consider that the SeaWiFS performance of Ca retrieval is satisfactory and for this Ca range there is no need to further develop a “regional” bio-optical algorithm to account for the previous SeaWiFS “underestimation”.  相似文献   

7.
Simple regression algorithms were developed to quantify spatio-temporal dynamics of minimum and maximum air temperatures (Tmin and Tmax, respectively) and soil temperature for a depth of 0-5 cm (Tsoil-5cm) across complex terrain in Turkey using Moderate Resolution Imaging Spectroradiometer (MODIS) data at a 500-m resolution. A total of 762 16-day MODIS composites (127 images × 6 bands) between 2000 and 2005 were averaged over a monthly basis to temporally match monthly Tmin, Tmax, and Tsoil-5cm from 83 meteorological stations. A total of 60 (28 temporally averaged plus 32 time series-based) linear regression models of Tmin, Tmax, and Tsoil-5cm were developed using best subsets procedure as a function of a combination of 12 explanatory variables: six MODIS bands of blue, red, near infrared (NIR), middle infrared (MIR), normalized difference vegetation index (NDVI), and enhanced vegetation index (EVI); four geographical variables of latitude, longitude, altitude, and distance to sea (DtS); and two temporal variables of month, and year. The best multiple linear regression models elucidated 65% (RMSE = 5.9 °C), 65% (RMSE = 5.1 °C), and 57% (RMSE = 6.9 °C) of variations in Tmin, Tmax, and Tsoil-5cm, respectively, under a wide range of Tmin (−34 to 25 °C), Tmax (0.2-47 °C) and Tsoil-5cm (−9 to 40 °C) observed at the 83 stations.  相似文献   

8.
Accurate estimation of phytoplankton chlorophyll a (Chla) concentration from remotely sensed data is particularly challenging in turbid, productive waters. The objectives of this study are to validate the applicability of a semi-analytical three-band algorithm in estimating Chla concentration in the highly turbid, widely variable waters of Taihu Lake, China, and to improve the algorithm using a proposed four-band algorithm. The improved algorithm is expressed as [Rrs(λ1)− 1 − Rrs(λ2)− 1][Rrs(λ4)− 1 − Rrs(λ3)− 1]− 1. The two semi-analytical algorithms are calibrated and evaluated against two independent datasets collected from 2007 and 2005 in Taihu Lake. Strong linear relationships were established between measured Chla concentration and that derived from the three-band algorithm of [Rrs− 1(660) − Rrs− 1(692)]Rrs(740) and the four-band algorithm of [Rrs− 1(662) − Rrs− 1(693)][Rrs− 1(740) − Rrs− 1(705)]− 1. The first algorithm accounts for 87% and 80% variation in Chla concentration in the 2007 and 2005 datasets, respectively. The second algorithm accounts for 97% of variability in Chla concentration for the 2007 dataset and 87% of variation in the 2005 dataset. The three-band algorithm has a mean relative error (MRE) of 43.9% and 34.7% for the 2007 and 2005 datasets. The corresponding figures for the four-band algorithm are 26.7% and 28.4%. This study demonstrates the potential of the four-band model in estimating Chla even in highly turbid case 2 waters.  相似文献   

9.
We used spaceborne imaging spectroscopy provided by the Earth Observing-1 Hyperion sensor to quantify the relative importance of precipitation and substrate age that control ecosystem development and functioning in Metrosideros polymorpha rainforests of Hawaii. Four hyperspectral vegetation indices provided metrics of forest canopy structure, biochemistry and physiology to compare along gradients of annual rainfall (750 to > 6000 mm year 1) and substrate age (0 to 250,000 years). The canopy greenness index NDVI increased with annual precipitation and substrate age, but saturated in forests with rainfall of 3000 mm year 1. Precipitation and substrate age were roughly equal contributors to the observed greenness of the forests. A canopy water content index (NDWI) also increased with precipitation and substrate age, but did not reach a maximum until very wet (> 5000 mm year 1) forest conditions were encountered on the oldest substrates. The water index appears superior to the NDVI in capturing spatial and climate-substrate driven variations in canopy structure. The photochemical reflectance index (PRI) indicated highest light-use efficiency levels in canopies on the most developed substrates and at annual precipitation levels of 3-4500 mm year 1. A leaf carotenoid index (CRI) suggested a maximum canopy photosynthetic capacity at ∼ 4000 mm rainfall year 1 on the oldest substrates. These results quantify the sensitivity of rainforest canopies to changing precipitation and soil conditions, and they corroborate plot-scale analyses in native Hawaiian forests ecosystems. Structural and functional studies of remote rainforest regions are possible with spaceborne imaging spectroscopy, and could be used to understand the dynamics of rainforests with climate change.  相似文献   

10.
Zr4+- and Eu3+-codoped SrMg2(PO4)2 phosphors were prepared by conventional solid-state reaction. Under the excitation of ultraviolet light, the emission spectra of Sr0.95Eu0.05Mg2−2xZr2xP2O8 (x = 0.0005-0.07) are composed of a broad emission band peaking at 500 nm from Zr4+-emission and the characteristic emission lines from the 5D0 → 7FJ (J = 0, 1, 2, 3 and 4) transitions of Eu3+ ions. These phosphors show the long-lasting phosphorescence. The emission color varies from red to white with increasing Zr4+-content. The white-light emission is realized in single-phase phosphor of Sr0.95Eu0.05Mg2−2xZr2xP2O8 (x = 0.07) by combining the Zr4+- and Eu3+-emission. The duration of the persistent luminescence of Sr0.95Eu0.05Mg2−2xZr2xP2O8 (x = 0.07) reaches nearly 1.5 h. The time at which the long-lasting phosphorescence intensity is 50% of its original value (T0.5) is 410 s. The afterglow decay curves and the thermoluminescence spectra were measured to discuss this long-lasting phosphorescence phenomenon. The co-doped Zr4+ ions act as both the luminescence centers and trap-creating ions.  相似文献   

11.
Near real-time data from the MODIS satellite sensor was used to detect and trace a harmful algal bloom (HAB), or red tide, in SW Florida coastal waters from October to December 2004. MODIS fluorescence line height (FLH in W m− 2 μm− 1 sr− 1) data showed the highest correlation with near-concurrent in situ chlorophyll-a concentration (Chl in mg m− 3). For Chl ranging between 0.4 to 4 mg m− 3 the ratio between MODIS FLH and in situ Chl is about 0.1 W m− 2 μm− 1 sr− 1 per mg m− 3 chlorophyll (Chl = 1.255 (FLH × 10)0.86, r = 0.92, n = 77). In contrast, the band-ratio chlorophyll product of either MODIS or SeaWiFS in this complex coastal environment provided false information. Errors in the satellite Chl data can be both negative and positive (3-15 times higher than in situ Chl) and these data are often inconsistent either spatially or temporally, due to interferences of other water constituents. The red tide that formed from November to December 2004 off SW Florida was revealed by MODIS FLH imagery, and was confirmed by field sampling to contain medium (104 to 105 cells L− 1) to high (> 105 cells L− 1) concentrations of the toxic dinoflagellate Karenia brevis. The FLH imagery also showed that the bloom started in mid-October south of Charlotte Harbor, and that it developed and moved to the south and southwest in the subsequent weeks. Despite some artifacts in the data and uncertainty caused by factors such as unknown fluorescence efficiency, our results show that the MODIS FLH data provide an unprecedented tool for research and managers to study and monitor algal blooms in coastal environments.  相似文献   

12.
Two physical phenomena by which satellite remotely sensed ocean color data are contaminated by sea ice at high latitudes are described through simulations and observations: (1) the adjacency effect that occurs along sea ice margins and (2) the sub-pixel contamination by a small amount of sea ice within an ocean pixel. The signal at the top of the atmosphere (TOA) was simulated using the 6S radiative transfer code that allows modeling of the adjacency effect for various types of sea ice surrounding an open water area. In situ sea ice reflectance spectra used in the simulations were measured prior to and during the melt period as part of the 2004 Canadian Arctic Shelf Exchange Study (CASES). For sub-pixel contamination, the TOA signal was simulated for various surface reflectances obtained by linear mixture of both sea ice and water-leaving reflectances (ρw). The standard atmospheric correction algorithm was then applied to the simulated TOA spectra to retrieve ρw spectra from which chlorophyll a concentrations (CHL) and inherent optical properties (IOPs) were derived. The adjacency effect was associated with large errors (> 0.002) in the retrieval of ρw as far as 24 km from an ice edge in the blue part of the spectrum (443 nm). Therefore, for moderate to high CHL (> 0.5 mg m− 3), any pixel located within a distance of ∼ 10-20 km from the ice edge were unreliable. It was also found necessary to consider the adjacency effect when the total absorption coefficient (at) was to be retrieved using a semi-analytical algorithm. at(443) was underestimated by more than 35% at a distance of 20 km from an ice edge for CHL > 0.5 mg m− 3. The effect on the retrieval of the particle backscattering coefficient (bbp) was important only for clear waters (CHL ∼ 0.05 mg m− 3). In contrast, sub-pixel contamination by a small amount of sea ice produced systematic underestimation of ρw in the blue because of incorrect interpretation of enhanced reflectance in the near infrared that is attributed to higher concentrations of atmospheric aerosols. In general, sub-pixel contamination was found to result in overestimations of CHL and at, and underestimations of bbp. A simple method was proposed to flag pixels contaminated by adjacency effect.  相似文献   

13.
The objective of this research is to develop a global remote sensing evapotranspiration (ET) algorithm based on Cleugh et al.'s [Cleugh, H.A., R. Leuning, Q. Mu, S.W. Running (2007) Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment 106, page 285-304- 2007 (doi: 10.1016/j.rse.2006.07.007).] Penman-Monteith based ET (RS-PM). Our algorithm considers both the surface energy partitioning process and environmental constraints on ET. We use ground-based meteorological observations and remote sensing data from the MODerate Resolution Imaging Spectroradiometer (MODIS) to estimate global ET by (1) adding vapor pressure deficit and minimum air temperature constraints on stomatal conductance; (2) using leaf area index as a scalar for estimating canopy conductance; (3) replacing the Normalized Difference Vegetation Index with the Enhanced Vegetation Index thereby also changing the equation for calculation of the vegetation cover fraction (FC); and (4) adding a calculation of soil evaporation to the previously proposed RS-PM method.We evaluate our algorithm using ET observations at 19 AmeriFlux eddy covariance flux towers. We calculated ET with both our Revised RS-PM algorithm and the RS-PM algorithm using Global Modeling and Assimilation Office (GMAO v. 4.0.0) meteorological data and compared the resulting ET estimates with observations. Results indicate that our Revised RS-PM algorithm substantially reduces the root mean square error (RMSE) of the 8-day latent heat flux (LE) averaged over the 19 towers from 64.6 W/m2 (RS-PM algorithm) to 27.3 W/m2 (Revised RS-PM) with tower meteorological data, and from 71.9 W/m2 to 29.5 W/m2 with GMAO meteorological data. The average LE bias of the tower-driven LE estimates to the LE observations changed from 39.9 W/m2 to − 5.8 W/m2 and from 48.2 W/m2 to − 1.3 W/m2 driven by GMAO data. The correlation coefficients increased slightly from 0.70 to 0.76 with the use of tower meteorological data. We then apply our Revised RS-PM algorithm to the globe using 0.05° MODIS remote sensing data and reanalysis meteorological data to obtain the annual global ET (MODIS ET) for 2001. As expected, the spatial pattern of the MODIS ET agrees well with that of the MODIS global terrestrial gross and net primary production (MOD17 GPP/NPP), with the highest ET over tropical forests and the lowest ET values in dry areas with short growing seasons. This MODIS ET product provides critical information on the regional and global water cycle and resulting environment changes.  相似文献   

14.
Nb2O5-doped (1 − x)Ba0.96Ca0.04TiO3-xBiYO3 (where x = 0.01, 0.02, 0.03 and 0.04) lead-free PTC thermistor ceramics were prepared by a conventional solid state reaction method. X-ray diffraction, scanning electron microscope, Agilent E4980A and resistivity-temperature measurement instrument, were used to characteristic the lattice distortion, microstructure, temperature dependence of permittivity and resitivity-temperature dependence. It was revealed that the tetragonality c/a of the perovskite lattice, the microstructure and the Curie temperature changed with the BiYO3 content. In order to decrease the room temperature resistivity, the effect of Nb2O5 on the room temperature resistivity was also studied, and its optimal doping content was finally chosen as 0.2 mol%. The 0.97Ba0.96Ca0.04TiO3-0.03BiYO3-0.002Nb2O5 thermistor ceramic exhibited a low ρRT of 3.98 × 103 Ω cm, a typical PTCR effect of ρmax/ρmin > 103 and a Tc of 153 °C.  相似文献   

15.
A novel amperometric biosensor for the determination of catechol was developed accordingly to the electrochemical template procedure. The optimum fabricating conditions of the biosensor were studied. The resulting biosensor with the limit of less than 0.05 μM can be used for detection of catechol in the linear range of 2.5-140 μM. The maximum response current (Imax) and the Michaelis-Menten constant (km) are 3.08 μA and 77.52 μM, respectively. The activation energy (Ea) of the polyphenol oxidase (PPO) catalytic reaction is 25.56 kJ mol−1 in the B-R buffer. The stability of the PANI-CA biosensor fabricated with the electrochemical template process (retains 86% of the original activity after four months) is much higher than that fabricated with one-step and two-step processes (retains 75% of the original activity after four months). The effects of potential and pH on the response current of the biosensor are also described.  相似文献   

16.
A highly sensitive integrated polarimetric interferometer biosensor with improved long-time stability and simple operation was prepared by using a novel prism-chamber assembly and an inexpensive waveguide made by sputtering a tapered nanometric layer of Ta2O5 on a single-mode glass waveguide. By comparing the measured refractive-index (RI) sensitivities with those simulated based on a four-layer homogeneous waveguide, both the equivalent thicknesses (Teq) for the tapered Ta2O5 layers and a severe dependence of RI sensitivity on Teq were obtained. Addition of 1 g of water in 100 g of a Chinese liquor (alcohol concentration = 46% (v/v)) was easily detected by the sensor. Monitoring of anti-human IgG adsorption with a waveguide of Teq = 31.99 nm indicates that the antibody coverage required for inducing a phase-different change of Δ? = π is less than 0.012 monolayer. The same waveguide presents a quasi-linear dependence of Δ? on water temperature with the slope of d?)/dT = −28.50°/°C to which the contribution by the thermo-optical effect of the waveguide is 4.24°/°C, equivalent to a liquid RI change of Δnc = 1.41 × 10−5. The interferometer exhibits the promising potential for chemical and biological analyses because of its outstanding characteristics.  相似文献   

17.
Model-data fusion offers considerable promise in remote sensing for improved state and parameter estimation particularly when applied to multi-sensor image products. This paper demonstrates the application of a ‘multiple constraints’ model-data fusion (MCMDF) scheme to integrating AMSR-E soil moisture content (SMC) and MODIS land surface temperature (LST) data products with a coupled biophysical model of surface moisture and energy budgets for savannas of northern Australia. The focus in this paper is on the methods, difficulties and error sources encountered in developing an MCMDF scheme and enhancements for future schemes. An important aspect of the MCMDF approach emphasized here is the identification of inconsistencies between model and data, and among data sets.The MCMDF scheme was able to identify that an inconsistency existed between AMSR-E SMC and LST data when combined with the coupled SEB-MRT model. For the example presented, an optimal fit to both remote sensing data sets together resulted in an 84% increase in predicted SMC and 0.06% increase for LST relative to the fit to each data set separately. That is the model predicted on average cooler LST's (∼ 1.7 K) and wetter SMC values (∼ 0.04 g cm− 3) than the satellite image products. In this instance we found that the AMSR-E SMC data on their own were poor constraints on the model. Incorporating LST data via the MCMDF scheme ameliorated deficiencies in the SMC data and resulted in enhanced characterization of the land surface soil moisture and energy balance based on comparison with the MODIS evapotranspiration (ET) product of Mu et al. [Mu, Q., Heinsch, F.A, Zhao, M. and Running, S.W. (in press), Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sensing of Environment.]. Canopy conductance, gC, and latent heat flux, λE, from the MODIS ET product were in good agreement with RMSEs for gC = 0.5 mm s− 1 and for λE = 18 W m− 2, respectively. Differences were attributable to a greater canopy-to-air vapor pressure gradient in the MCMDF approach obtained from a more realistic partitioning of soil surface and canopy temperatures.  相似文献   

18.
Studies using satellite sensor-derived data as input to models for CO2 exchange show promising results for closed forest stands. There is a need for extending this approach to other land cover types, in order to carry out large-scale monitoring of CO2 exchange. In this study, three years of eddy covariance data from two peatlands in Sweden were averaged for 16-day composite periods and related to data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and modeled photosynthetic photon flux density (PPFD). Noise in the time series of MODIS 250 m vegetation indices was reduced by using double logistic curve fits. Smoothed normalized difference vegetation index (NDVI) showed saturation during summertime, and the enhanced vegetation index (EVI) generally gave better results in explaining gross primary productivity (GPP). The strong linear relationships found between GPP and the product of EVI and modeled PPFD (R2 = 0.85 and 0.76) were only slightly stronger than for the product of EVI and MODIS daytime 1 km land surface temperature (LST) (R2 = 0.84 and 0.71). One probable reason for these results is that several controls on GPP were related to both modeled PPFD and daytime LST. Since ecosystem respiration (ER) was largely explained by diurnal LST in exponential relationships (R2 = 0.89 and 0.83), net ecosystem exchange (NEE) was directly related to diurnal LST in combination with the product of EVI and modeled PPFD in multiple exponential regressions (R2 = 0.81 and 0.73). Even though the R2 values were somewhat weaker for NEE, compared to GPP and ER, the RMSE values were much lower than if NEE would have been estimated as the sum of GPP and ER. The overall conclusion of this study is that regression models driven by satellite sensor-derived data and modeled PPFD can be used to estimate CO2 fluxes in peatlands.  相似文献   

19.
To estimate the gross CO2 flux (FCO2) of deciduous coniferous forest from canopy spectral reflectance, we introduced spectral vegetation indices (VIs) into a light use efficiency (LUE) model of mature Japanese larch (Larix kaempferi) forest. We measured the eddy covariance CO2 flux and spectral reflectance of larch canopy at half-hourly intervals during one growing season, and investigated the relationships between the parameters of the LUE model (FAPAR, ?) and 3 types of VIs (NDVI, PRI, EVI) in both clear sky and cloudy conditions.FAPAR (fraction of absorbed photosynthetically active radiation) had a positive linear relationship with both NDVI (normalized difference vegetation index) and EVI (enhanced vegetation index), and the sky condition had little effect on the relationships. The relative RMSE (root mean square error) of the APAR (absorbed photosynthetically active radiation) based on the incoming PAR and estimated FAPAR from a linear function of NDVI was less than 10.5%, irrespective of sky condition.Half-hourly values of ? (conversion efficiency of absorbed energy) showed both seasonal variation related to leaf phenology and short-term variation related to light intensity due to varied sun position and sky condition. Both EVI and PRI (photochemical reflectance index) were significantly correlated with ?. EVI showed a positive linear relationship with ? as a result of their similar seasonal variation. However, since EVI did not detect short-term variation of ?, their relationship differed among sky conditions. On the other hand, although PRI could trace the short-term variation of ? in green needles, the relationship became non-linear due to drastic reduction of PRI in the senescent needles.EVI/(PRI/PRImin), a combined index based on a 6-day moving minimum value of PRI (PRImin), showed a linear relationship with half-hourly values of ? throughout the seasons irrespective of sky condition. This index allow us to estimate ? in all sky conditions with a smaller error (rRMSE = 35.2%) than using EVI or PRI alone (38.7%-48.7%). Consequently, this combined index-derived ? and NDVI-based FAPAR gave a low estimation error of FCO2 (rRMSE = 36.4%, RMSE = 8.3 μmol m− 2 s− 1). Although there are still various issues to resolve, including adaptive limit and combination of vegetation index type, we conclude that the combination of PRI and EVI increased the accuracy of estimation of CO2 uptake in deciduous forest even though sky conditions varied.  相似文献   

20.
Let G be a graph. Then T ⊆ V(G) is called an Rk-vertex-cut if G − T is disconnected and each vertex in V(G) − T has at least k neighbors in G − T. The size of a smallest Rk-vertex-cut is the Rk-vertex-connectivity of G and is denoted by κk(G). In this paper, we determine the numbers κ1 and κ2 for Cayley graphs generated by 2-trees, including the popular alternating group graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号