首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 796 毫秒
1.
为了实现相对论返波管振荡器(RBWO)永磁包装,本文采用Magic模拟软件在0.5T低磁场相对论返波管(RBWO)器件结构基础上,通过在器件慢波结构末端添加一个部分反射腔,减小电子束质量对束波转换影响,即减小引导磁场的影响,实现了Ku波段相对论返波管振荡器0.3T磁场下运行.当电子束束压600kV、电子束束流7kA时,模拟得到器件输出微波功率740MW,效率18%.尽管该器件的效率低于0.5T磁场下的效率(25%),然而0.3T引导磁场在工程上更容易实现.结合小型化的脉冲功率源进行实验研究,当二极管束压580kV、束流6.5kA,实验获得功率600MW,频率13.10GHz,脉宽25ns的微波输出,该器件的研制可以促进高功率微波(HPM)系统小型化的发展.  相似文献   

2.
从线性化的Vlasov方程出发,研究了相对论返波管中产生的微波功率与磁场的关系,给出了低引导磁场相对论返波管振荡器的设计准则;设计了一个高效率的高功率返波管振荡器,通过采用过模的分段、非均匀慢波结构,实现器件的高效率、高功率运行,同时通过在慢波结构末端添加部分反射腔来降低引导磁场强度.当引导磁场强度为0.6T、电子能量和束流分别为800 keV和7.6kA时,采用2.5维Particle in Cell(PIC)程序模拟得到频率为9.6 GHz、功率为1.85 GW的微波输出.  相似文献   

3.
首先通过粒子模拟设计了一个X波段的低磁场返波管振荡器,得到功率为520MW、频率为7.9GHz的微波输出;然后根据模拟结果设计加工了一个磁场强度为0.46T的小型化永磁磁体;最后在加速器上对永磁包装返波管振荡器进行了实验研究。当电子能量为630keV、束流约为6.7kA时,返波管振荡器得到频率为8.0GHz、功率为510MW、脉冲半高宽约15ns的微波输出。  相似文献   

4.
为实现高功率微波(HPM)系统的小型化,设计一个S波段较低磁场相对论返波管(RBWO)振荡器。针对低磁场特点,分析慢波结构、引导磁场、束压、束流等对输出微波的影响,通过模拟软件(PIC)优化结构。以此设计引导磁场为0.24 T,电子束束压为725 kV,束流为6 kA,频率为3.53 GHz,输出微波功率为1.22 GW,束波转换效率为27%的低磁场S波段相对论返波管。仿真实验结果表明:在强流电子束加速器平台上外加磁场为0.24 T时,得到平均功率1 GW、频率3.58 GHz、脉宽90 ns的微波输出,与理论值一致。进行了重频为1 Hz,20 s的稳定性实验,该实验结果为实现相对论返波管的永磁包装奠定了良好的基础。  相似文献   

5.
张海  邵洋洲 《电子测试》2013,(20):68-69,37
本文通过理论分析与数值模拟相结合的方法对220 GHz高功率微波信号源进行了设计与仿真。研究表明,在120 kV注入波电压、4.0 T引导磁场条件下,模拟得到了4.8 MW的信号功率输出,工作频率高于220 GHz。同时,器件输出性能可由注入电压波幅度及外加引导磁场强度调节。  相似文献   

6.
利用基于波导结构的功率合成器来合成高功率微波,是提高窄带高功率微波源输出能力的一个有效方式。本文 设计了一种特殊的类? 型高功率微波合成器,该合成器可以用来合成X 波段同一个频率下的两束高功率微波。文中给出 了该合成器的设计方法及仿真结果,并且将该合成器结构与新型同轴双电子束高功率微波源[1]结合进行了粒子模拟,结果 表明,当加载的二极管电压为674kV,导引磁场为0.8T,内电子束电流为6.6kA,外电子束电流为14.3kA 时,该同轴双 电子束高功率微波源输出的两路微波经功率合成器合成以后输出了频率为9.74GHz,功率高达3.5GW 的微波。  相似文献   

7.
首次提出了由双电子注同轴相对论返波管来产生双频微波输出,采用2.5 维相对论全电磁PIC 粒子模拟软件,进行粒子模拟研究。结果表明在环形相对论电子注电压625kV,电流24kA,引导磁场0.772T 的条件下,器件得到了稳定的高功率双频微波输出。其双频微波频率分别为11.5GHz 和12.2GHz,两频率相差700MHz,平均功率约为1.15GW,平均功率效率7.7%。  相似文献   

8.
为了实现高功率微波(HPM)系统小型化,结合传统低磁场相对论返波管振荡器(RBWO)的设计理论,设计一个Ku波段较低磁场的相对论返波振荡器。分析束压、束流、引导磁场等对输出微波的影响,并采用粒子模拟软件(PIC)优化结构。当轴向引导磁场为0.4 T,电子束束压和束流分别为600 k V和7 k A时,得到频率为13.08 GHz,功率为1.0 GW的微波输出。在强流电子束加速器平台上开展实验验证模拟结果:外加磁场0.4 T时,得到平均功率为850 MW、频率13.05 GHz、脉宽24 ns的微波输出。该实验结果为实现较低磁场GW级微波输出打下了良好的基础。  相似文献   

9.
利用2.5 维粒子模拟软件Karat 对一种无导引磁场X 波段Cerenkov 型高功率微波振荡器开展了仿真研究,利用 冷腔色散曲线模型与Superfish 电磁场分布模拟软件选择了工作点,设计了基本模型。在基本模型的基础上进行仿真优化, 通过采用内外约束阴极环提高电子束质量,采用锥变型收集极优化器件Q 值、增加模转效率、纯化输出微波模式,优化 非均匀锥形慢波结构增强束波作用,最终使器件效率从17%优化到30%,输出功率达到1.8GW,输出微波模式为TEM 模,频率9.1GHz,对应二极管工作电压620kV、电流9.4kA.  相似文献   

10.
孙晓亮  张军李伟 《微波学报》2014,30(S2):422-425
:本文报道了一个X 波段18 腔衍射输出相对论磁控管的初步模拟研究结果。利用高频场分析软件和粒子模拟软件, 通过分析和优化器件的结构参数,合理选取电磁场取值大小,最终得到:在二极管电压350 kV,外加磁场0.41T 条件下, 可以得到输出功率1.09 GW、功率转换效率为22%、频率9.59GHz 的微波。  相似文献   

11.
为了提高返波管的工作效率,本文模拟设计了一个X 波段非均匀周期慢波结构的相对论返波管。模拟结果表 明:在电压为719kV,电流为10.2kA,磁场为3.0T 条件下,微波输出功率为2.81GW,工作频率为9.04GHz,效率为 38.3%,输出模式为TM01 模。模拟结果表明,采用非均匀周期慢波结构有效地提高了器件的工作效率。论文同时模拟 研究了电子束电压对器件输出功率、效率、工作频率的影响。  相似文献   

12.
提出3cm双频两段式同轴相对论返波振荡器,用粒子模拟软件对其结构和电磁参数进行分析研究,优化得到的结构参数为第一、二段分别为10和4个周期数,周期长度分别为0.5cm、0.73cm,波纹幅值分别为0.13cm、0.21cm,平均半径2.9cm,同轴间隙为2.1cm。实验结果表明在环形相对论电子注电压为510kV,电流为9.4kA,引导磁场为0.7T的条件下,器件得到了3cm波段稳定的高功率双频微波输出,其平均功率约为0.75GW,平均功率效率为15.6%。  相似文献   

13.
提出了一种3.2cm的相对论返波管振荡器,并利用2.5维粒子模拟软件KARAT研究了引导磁场强度、电子能量、电子束环平均半径、电子束环厚度对输出微波的影响。最后,在电子束为环形电子束(电子束束环平均半径为0.95cm,束环厚度为1mm)、电子束束压为900kV、电子束束流为6.7kA、引导磁场为3.2T时,得到了1.2GW的微波输出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号