首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
针对强磁、狭小空间等特殊环境下的液体温度实时检测,利用液体折射率随温度变化规律,结合光在液体中的传播特性,设计了用于液体温度实时检测的反射式光纤温度传感器。在提出反射式光纤温度传感器测温原理的基础上,确定了传感器探头结构,根据光纤纤端光场近似高斯分布的特性建立传感器数学模型,分析了不同参数对传感器输出特性的影响,并搭建传感器实验平台进行静态标定。实验结果表明:在30~120℃的测量范围内,该传感器可以实现对温度的检测,灵敏度为0.71 mV/℃。  相似文献   

2.
为了实现液位液压及温度三参数同时准确检测,本文首先采用光纤Bragg光栅(FBG)、弹性隔膜、微腔、FBG固定板及导气管构建了光纤隔膜传感器,搭建了测量系统。其次,建立了传感器测量理论模型,实验研究了传感器对液位、液压及温度的响应特性。最后,为了研究传感器对外界环境变化的抗干扰能力,实验研究了温度、倾角和液位动态变化速率对液位及液压测量结果产生的影响。研究结果表明:当液位变化速率为10~100 cm/min、传感器倾斜角度在-30°~30°范围、温度在20℃~60℃范围时,传感器输出信号与液位0~220 cm及液压0~22 kPa间具有线性关系,液位及液压测量结果不受液位变化速率、传感器倾角及温度变化的影响;传感器液位、液压及温度灵敏度分别为35.16 pm/cm、359.46 pm/kPa和10.07 pm/℃,最大相对误差为5.6%。  相似文献   

3.
为了提高光纤EFPI传感器的灵敏度,提出了一种新型EFPI传感结构,并对其温度特性以及横向负载特性进行了研究。首先,介绍了采用端面镀钯金膜的光纤EFPI传感器的结构及其制作方法;接着,建立了镀钯金膜光纤EFPI的温度传感模型,并通过Solidworks、Hypermesh与有限元分析软件ANSYS联合仿真,对它在不同受压力下进行理论模拟,获得了腔长变化与压力之间的关系;最后,对传统的光纤EFPI与镀钯金膜光纤EFPI的温度和横向负载特性进行了对比试验。试验结果表明,镀钯金膜光纤EFPI的温度灵敏度为6.083pm/℃,具有温度自补偿特性;它对横向负载的检测灵敏度可达40.83m/g,相对于传统的光纤EFPI横向负载的灵敏度提高了2.10倍。实验结果与理论分析相符合,为实际制作具有温度自补偿的高灵敏度光纤EFPI传感器提供了理论与实验依据。  相似文献   

4.
沈涛  孙滨超  冯月 《光学精密工程》2018,26(6):1338-1345
为了简化光纤磁场与温度传感器的结构并提高传感器灵敏度,设计并制作了马赫-曾德尔干涉集成化的全光纤磁场与温度传感器。将单根光纤的马赫-曾德尔模间干涉结构和双臂马赫-曾德尔干涉结构结合:将总长度为1.2m的单模光纤部分制备成长度为2.7cm、锥腰直径为30.1μm的锥形微纳光纤,并得到了拉锥时间与锥腰直径的关系。将锥形微纳光纤放置尼龙槽内并包覆磁凝胶构成传感头,实现模间干涉的马赫-曾德尔磁场传感器;将磁场传感器通过两耦合比为50%∶50%的耦合器并联带有可调谐光衰减器的单模光纤形成马赫-曾德尔干涉的温度传感器。从理论上分析了光谱漂移对磁场和温度传感的特性关系,实验测得室温下磁场强度在25~50mT时,磁场传感的灵敏度为0.301 14nm/mT;在磁场强度为0,温度由25℃升高到30℃时,温度传感的灵敏度为0.518 86nm/℃。该传感器可广泛应用于电力系统放电检测、材料加工、安全监控等领域。  相似文献   

5.
应用于特殊环境的光纤光栅温度压力传感器   总被引:5,自引:3,他引:2  
针对现有高温高压油井下对温度和压力的实时长期监测要求,设计了温度补偿式光纤光栅温度压力双参量传感系统。根据传感器的使用环境,优选了恒弹性合金。采用优选后的恒弹性合金作为基底材料设计了圆筒与圆形膜片组合式传感器结构,圆形膜片是整体加工成型的。最后,对传感器进行相关实验测试。实验测试与误差分析结果显示,传感器实现了温度和压力的大量程测量,传感特性呈单值线性,温度补偿可一体化封装;温度线性检测区为0~350℃,温度灵敏度为0.020 1 nm/℃,温度测量静态误差为0.029%;压力线性检测区为0~60 MPa,压力灵敏度为0.013 6nm/MPa,压力测量静态误差为0.046%,这些指标能够满足实际工程的要求。  相似文献   

6.
光纤光栅传感器在航空航天领域有着广阔的应用前景,为了实现在航空航天真空环境下对卫星结构进行温度测量,对光纤光栅进行了特殊封装结构设计,在准确采集温度数据的同时,排除了结构应变对测量结果的影响,并对设计进行了有限元仿真分析。在-60-60℃的温度环境下,这种新型封装光纤光栅温度传感器的测试线性度为0.998,温度灵敏度为14.87pm/℃。为了验证其解耦特性,在MTS拉伸试验机上进行了测试,试验结果表明:结构形变带来的应变对该温度传感器没有影响,与理论分析相符。将其运用到实际真空环境进行对比验证,实验精度达0.15+0.002|t|℃。  相似文献   

7.
预紧封装光纤光栅温度传感器传感特性研究   总被引:2,自引:0,他引:2  
为了获得稳定测量温度变化的光纤光栅温度传感器,笔者研究带预紧力的光纤光栅温度传感器的封装技术及其传感特性。通过温度传感理论分析,在避免光纤光栅对温度和应变的交叉敏感情况下,对光纤光栅温度传感器进行有限元Ansys应力分布进行模拟,可知本封装具有一定的减敏作用,温度测量量程增大,满足更多实际工程中的使用。环氧树脂DP420将带有预紧力光纤光栅封装在铍青铜材料的圆柱体内,在恒温鼓风干燥箱对光纤光栅温度传感器进行传感特性研究,40~120℃的范围内,每次升温5℃。所得结果,此光纤光栅温度传感器的温度灵敏度系数为23.81pm/℃,是裸光纤光栅传感器的2倍,且线性度达0.999以上。该文对光纤光栅工程化具有较大的应用价值。  相似文献   

8.
一种非本征F-P腔型光纤传感器的研究   总被引:3,自引:0,他引:3  
介绍了用于温度、压力及应变测量的非本征F-P腔(extrinsic Fabry-Perot cavity)光纤传感器系统及其工作原理,当温度和压力/应变同时存在,F-P传感头交叉敏感,利用不锈钢外套屏蔽测温探头的压力/应变效应,采用与准直毛细管同材料光纤作F-P腔反射端补偿压力/应变探头的温度响应.实验表明,0~14MPa和100~300με压力和应变测量范围内最小分辨率达到20kPa和0.5με,100℃温度范围内压力的测量精度达到0.1%,温度传感器在0~100℃测量下,精度达到±0.01℃.  相似文献   

9.
针对工程温度测量问题,提出了一种光纤光栅温度传感器的管式封装方法。利用耐高温AB胶将裸光栅粘贴于铜管内壁,实现增敏效果。首先简述了光纤光栅温度传感原理及其增敏模型,然后搭建了相应的温度实验平台,并且实验研究了铜管封装FBG温度传感器与裸光栅的温度感知特性。实验结果表明:在-40℃~120℃的区间范围内,铜管封装FBG温度传感器的灵敏度达到25 pm/℃左右,与理论值相符,且相较于裸光栅具有更高的灵敏度与线性度。该温度传感器具有良好的温度感知特性,可以应用于工程温度的检测。  相似文献   

10.
FBG级联MZI的温度和酒精溶液浓度传感特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了测量白酒蒸馏过程中的温度和酒精溶度,制作了一种基于马赫曾德仪(MZI)与光纤布拉格光栅(FBG)级联的可同时测量温度和酒精溶液浓度的光纤传感器。FBG是利用飞秒激光逐线刻写的方式在单模光纤(SMF)中制作的周期为2.2μm,布拉格波长为1 591.21 nm,透射谱深度可达23 d B的4阶光纤布拉格光栅;MZI是将细芯光纤和SMF采用纤芯错位和锥腰扩大熔接技术制作的腔长为8.7 mm,对比度为28.5 d B的透射式光纤干涉传感器。基于多光束干涉理论对传感器的温度和酒精溶液浓度传感特性进行分析,利用MZI干涉波谷与FBG透射峰的灵敏度差异,结合灵敏度系数矩阵实现对温度和酒精溶液浓度的同时测量。实验中,传感器的酒精溶液浓度和温度灵敏度分别可达-41.37 pm/%和58.96 pm/℃。该传感结构在白酒酿造产业有潜在的应用前景。  相似文献   

11.
为了实现飞机载荷谱飞行实测中对温度参数的精确测量,设计了一种应变解耦增敏式光纤光栅(fiber Bragg grating,简称FBG)温度传感器。通过力学建模分析设计新的传感器结构,对传感器的光纤光栅进行增敏处理,选取铝7075-T6为基底进行全覆盖式封装,提出光纤光栅封装位置与结构件之间无直接接触方式,排除结构形变对温度传感器带来的影响。经标定测试传感器温度灵敏速度为40.4 pm/℃,是普通光纤光栅的4倍。搭建实验系统进行其性能探究以及在拉伸实验机上进行解耦特性验证,拉伸实验件的变形对该温度传感器没有影响,与理论分析相符,最终将传感器贴于飞机座舱中进行实际工程应用。实验表明,传感器测得的温度差最大不超过±1 ℃,表明设计的传感器可以用于实际温度测量中,满足在飞机载荷谱飞行实测中温度参数精确测量的需求。  相似文献   

12.
膜片式微型F-P腔光纤压力传感器   总被引:2,自引:0,他引:2  
为满足工业和生物医学领域对微型化传感器的需求,实验研究了基于Fabry-Perot(F-P)干涉仪原理的膜片式微型光纤压力传感器的制作工艺.在单模光纤端面上直接熔接外径约175 μm的毛细石英管,在石英管的另一端制作敏感膜片,从而使光纤端面与膜片内表面之间形成F-P干涉腔.采用电弧熔接、切割、腐蚀膜片等方法制作了石英膜片式压力传感器,该传感器在0~3.1 MPa内F-P腔的腔长变化灵敏度为41.09 nm/MPa,压强测量分辨率为681 Pa,并具有很小的温度敏感系数.在30~140 ℃,温度交差敏感<1.07 kPa/℃.为了克服石英膜片减薄困难的缺点,选用聚合物材料(PSQ)作为压力敏感膜片制作了F-P传感器.室温下在0.1~2.1 MPa,PSQ膜片的F-P腔长变化灵敏度达到1 886.85 nm/MPa,压强测量分辨率达到53 Pa,十分接近人类或其他动物的体内压强测量水平.  相似文献   

13.
针对体内介入式医疗应用需求,提出一种基于超弹性体材料的微型光纤法珀压力传感器设计与制作方法。 通过理论分 析建立了适合超弹性体硅橡胶材料的 Mooney-Rivlin 力学仿真模型,对不同组分、厚度感压材料的受压变形状态进行了理论分 析,并获得优化的传感器材料及结构参数。 进一步提出微型光纤法珀压力传感器的制作方法,通过感压性能测试、温度影响测 试和体外血液压力测试,对比验证了不同参数传感器的感压性能。 结果表明,在感压材料直径 180 μm、厚度 250 μm 时,测压范 围 0~ 40 kPa 内传感器的压力灵敏度达到 154. 56 nm/ kPa,20℃ ~ 50℃大温度范围内引起的压力测量相对误差仅为 0. 36% ,温度 对压力测量的影响完全可忽略。 相比传统膜片式光纤压力传感器,基于超弹性体材料的微型光纤法珀压力传感器不仅尺寸小、 灵敏度高,还具有成本低、方便制作的技术优势。  相似文献   

14.
为了解决透射式光纤温度传感结构不利于测试、灵敏度不高的问题,提出并设计了反射式熊猫型保偏光纤双折射干涉温度传感器。首先通过理论分析并数值仿真研究了熊猫型保偏光纤传感臂长度、转轴角度与温度传感灵敏度之间的关系,并通过在传感臂端面镀金的方式提高反射率。在此基础上,搭建了光纤温度传感测试系统,测试结果表明,在转轴熔接45°、保偏光纤传感臂长度L=80 cm的条件下,50℃~56℃范围内传感器灵敏度可以达到2.741 nm/℃;在保偏光纤传感臂长度为L=7 cm、转轴熔接30°的条件下,65℃~76℃范围内传感器灵敏度为1.400 nm/℃。最后,把设计的温度传感器用于卫星模型温度的测量实验,验证了传感器应用的可行性及有效性。不同波长波谷的漂移量与温度变化呈现良好的线性关系。  相似文献   

15.
介绍一种利用半导体表面反射率随温度变化研制的光纤温度传感器,测量范围为20-200℃,响应速度<3s,灵敏度<1.0℃.这种传感器结构简单,具有开关特性.  相似文献   

16.
罗裴 《机电工程技术》2011,40(5):65-66,78
在理论推导光纤光栅压力传感器的灵敏度的基础上,采用结构增敏方法,设计并研制出了一种实用型高灵敏度的膜片式光纤光栅压力传感器,并用液压法对传感器的灵敏度进行了实验研究。实验结果表明,该高灵敏度膜片式光纤光栅压力传感器的反射波长移动量与膜片载荷(或水柱高度)成正比,其线性度达到0.9999,压力灵敏度系数为-0.023/MPa;实测压力灵敏度为0.03pm/Pa,理论压力灵敏度为0.0301pm/Pa,与实测压力灵敏度非常接近,二者的相对误差仅为0.33%。  相似文献   

17.
为了测量控机床结构件、微加工工作台的微小变形量,设计了一种高精度弓型光纤布拉格光栅(FBG)微位移传感器。将光纤布拉格光栅的栅区部分粘贴在弓型上下壁处,当弓形件发生变形时,可测出上下壁的应变值,从而测得位移值并进行温度解耦。实验结果表明,在量程为1mm时,传感器的灵敏度为2.02pm/μm,线性相关系数为0.998 3,实验的迟滞误差为4.08%,重复性误差为4.08%。在温度补偿实验中可以看出,当温度上升1℃,波长漂移量不到1pm。类似于弓型结构衍生出一种半弓型结构的位移传感器。两类传感器相比,弓型传感器的温度灵敏度比半弓型传感器小0.001 5pm/μm,温度补偿效果更好;但半弓型传感器的线性度为0.4%,线性度比弓型传感器好。两种传感器均满足测量值稳定可靠、精度高、抗电磁干扰能力强,温度不敏感等要求。  相似文献   

18.
设计并制备一种新型耐高温光纤光栅温度传感器,将光栅用绝热材料封装,通过杠杆结构与铝棒连接.当温度变化时,铝棒受热发生形变对外产生作用力,并通过杠杆结构增大,作用在光栅端,从而使光栅产生应变达到高温测量的效果.该结构摆脱了传统方案不能测量高温的问题,避免由于封装材料及衰退效应致使传感器不能测量高温的问题.经实验测量此传感器的温度灵敏度为0.005 nm/℃,测量温度高达310℃依然保持良好的线性,具有巨大的高温测试测试潜能.  相似文献   

19.
光纤傅里叶变换光谱术在光纤光栅传感解调中的应用   总被引:1,自引:1,他引:0  
朱灵  陈明星  方杰  刘勇  王安 《光学精密工程》2010,18(12):2537-2542
介绍了光纤Mach-Zehnder干涉仪的基本原理和光纤傅里叶变换光谱仪(FFTS)的结构;基于光纤Mach-Zehnder干涉仪,采用傅里叶变换光谱算法对光纤Bragg光栅传感器的波长进行了解调。宽带光源发出的光经过光纤耦合器进入光纤Bragg光栅,其反射光由耦合器返回进入到FFTS中进行测量,FFTS的最高光谱分辨率达到0.05 cm-1,即在近红外1 550 nm波长处分辨率为0.012 nm。分别对光纤Bragg光栅的应变特性和温度特性进行了测量。测量显示:光纤Bragg光栅的应变灵敏度为0.833 pm/με,温度灵敏度为19.78 pm/℃。得到的结果表明FFTS系统具有高分辨率、大测量范围的特点,可满足光纤Bragg光栅传感器波长解调的需求。  相似文献   

20.
贴片封装的光纤Bragg光栅温度传感器   总被引:2,自引:1,他引:2  
分析了光纤Bragg光栅的传感原理,提出了一种基于铍青铜片封装的光纤光栅温度传感模型。通过用一种耐高温胶将FBG粘贴在膜片材料上,使FBG在温度变化过程中一直保持张紧状态,保证FBG温度传感器有良好的重复性和线性。在20~200℃范围内进行温度实验,实验结果表明,FBG反射波长与温度有很好的线性关系,该温度传感器的温度响应灵敏度为0.0315nm/℃.实验拟舍值与理论值之差仅占理论值的2.9%。该传感器的温度测量范围大,可应用在油气井下较高温度环境的测量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号