首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于四足生物的身体和运动形态,设计了仿生四足机器人。介绍了这一仿生四足机器人的结构,并对腿部结构进行了分析。同时进行了包括直线行走和定点转弯在内的运动步态分析,确认了仿生四足机器人的运动稳定性。  相似文献   

2.
利用ADAMS软件虚拟样机技术,设计了液压驱动的四足仿生机器人单腿机械结构。通过分析四足哺乳类动物身体结构及运动特性,设计了仿生机器人的机械机构,确定了机器人腿部自由度配置,建立了仿真模型。根据动物的实际运动步态,规划并设计了静步态及对角小跑两种步态,进行了逆动力学仿真,得到关节等关键部位输出数据。在仿真实验的基础上,设计了液压作动器的关键参数及四足仿生机器人单腿机械结构。  相似文献   

3.
在了解国外主要研究成果的基础上,对四足机器人的关键技术进行了总结与分析。运动控制是四足机器人设计的关键技术之一,运动分析是为设计灵活稳定的物理样机及步态规划提供依据。在分析了仿生四足机器人实现运动要求的基本姿态的基础上,设计仿生四足机器人的机械结构;利用ADAMS建立了系统的考虑仿生四足机器人足部与地面接触的仿真模型,对其进行步态规划,仿真获得了四足机器人的动态特性;根据仿真结果,判断了步态规划的正确性及其影响,分析了摆动腿与地面冲击加速度过大的原因并提出了优化方案。  相似文献   

4.
一种四足马机器人的结构模型及其步行控制   总被引:1,自引:0,他引:1  
参照马的生理结构,对四足马机器人的一种结构及其步行控制方法进行了研究。为验证该方法的有效性,首先,根据仿生原理设计出具有12个运动关节和4个球形脚部的四足马机器人结构模型,并求出了其运动学反解;其次,基于提出的结构模型,设计并实现了四足马机器人行走步态和对角小跑步态,并对步行稳定性进行了分析。步行实验表明,所提出的四足马机器人仿生结构及两种步态的实现方法具有可行性。  相似文献   

5.
使用Adams对Pro/E造型的四足仿生机器人结构进行了仿真分析,为机器人控制器件,特别是驱动电机的选择以及步态的规划提供了重要的数据,并针对四足仿生机器人结构和控制性能的要求,以实现四足仿生机器人在复杂环境下稳定行走的运动策略为目的,设计了上下层分布控制系统.论述了控制系统方案及其控制机理,并详细介绍了机器人控制系统的硬件构成、软件体系及系统工作原理.  相似文献   

6.
为提高六足机器人对崎岖不平地势的适应能力,开发了一款基于树莓派视觉导航的六足仿生机器人,利用三维软件SolidWorks设计六足仿生机器人的机械结构;通过建立D?H坐标系和步态模型,对机器人进行了正?逆运动学方程推导,构建六足仿生机器人的运动学模型;运用多项式差值拟合对六足仿生机器人的摆动相和支撑相进行步态规划;使用MATLAB?ADAMS完成六足仿生机器人的位姿仿真,并进行六足仿生机器人实物验证.实验结果表明:该步态设计能有效对六足仿生机器人腿部运动轨迹进行跟踪,验证了步态设计的正确性和有效性,为改善多足类机器人行走提供有益参考.  相似文献   

7.
使用Adams对Pro/E造型的四足仿生机器人结构进行了仿真分析,为机器人控制器件,特别是驱动电机的选择以及步态的规划提供了重要的数据,并针对四足仿生机器人结构和控制性能的要求,以实现四足仿生机器人在复杂环境下稳定行走的运动策略为目的,设计了上下层分布控制系统。论述了控制系统方案及其控制机理,并详细介绍了机器人控制系统的硬件构成、软件体系及系统工作原理。  相似文献   

8.
从步态和步态时序两方面对四足和八足仿生机器人能够采用的基本步态进行了研究,根据步行足的有荷系数分别对四足和八足步态进行了分类,并比较不同步态下的速度及稳定性,为步行机器人的合理驱动和控制提供了理论依据。  相似文献   

9.
基于ADAMS的六足仿生机器人结构设计及运动仿真   总被引:1,自引:0,他引:1  
为了提高六足仿生机器人对工作环境的适应性及工作的灵活性,在分析仿生甲虫机体形态和结构特点的基础上,以甲虫为摹本,设计了一种性能优越、结构简单的六足对称的纲昆虫结构机器人,利用CATIA三维造型软件生成三维实体模型,将其导入ADAMS建立虚拟样机动力学模型。对其进行六足机器人在平坦地面上直线行走步态和定点转弯步态分析,得到了运动学和动力学特性曲线,验证了机器人结构的合理性和运动的可行性。为机器人数值计算及物理样机的研制提供理论依据,也为实现六足仿生机器人的精确控制创造条件。  相似文献   

10.
运用仿生学原理,在六足昆虫三角步态行走模式的基础上提出一种新的行走模式——四角步态模式,利用虚拟样机技术,构建出六足仿生机器人虚拟样机,并实现了六足仿生机器人的运动仿真。  相似文献   

11.
设计了一种电驱动四足仿生机器人,构造了具有主被动自由度、基于电动缸驱动的机器人腿部关节结构。对机器人进行运动学建模,并借助其运动学模型进行机器人正逆运动学计算,求解出了机器人腿部各个关节的转角函数。针对四足机器人的行走特点,提出一种四足机器人步态规划方法。经过对机构几何关系的分析计算,得到腿部各个关节电动缸位移量驱动函数。仿真实验结果表明,四足机器人在该种算法下可实现连续平稳的行走,初步验证了所提轨迹规划方法、步态及机构设计的合理性和有效性。  相似文献   

12.
从机械结构、运动模式和步态控制3个方面,对六足步行机器人的仿生机制进行了分析。提出一种灵活度评价函数,基于该函数对六足机器人的结构参数进行了优化;推导了步态模式与步行速度关系的数学表达;构建了分布式局部规则网络,可自适应地调整错乱的腿间相序,生成静态稳定的自由步态。仿真实验验证了上述仿生机制的有效性。  相似文献   

13.
基于蛇类生物的仿生变体机器人运动学研究   总被引:4,自引:2,他引:2  
基于仿生机械学的原理,本文提出了仿生变体机器人的物理结构,讨论了仿生变体机器人的运动机理,分析了仿生变体机器人线形运动的基本步态.并对该机器人系统进行了运动学分析,实验结果证明了这种运动步态的可行性.最后指出了这种基本运动步态的局限性和改进的方向.  相似文献   

14.
基于足端轨迹规划算法的液压四足机器人步态控制策略   总被引:17,自引:0,他引:17  
设计一种液压四足机器人仿生机构,通过设定相应的坐标系为机器人进行运动学建模,并对行走过程中单腿的相位关系进行了分析。针对行走过程中足端的拖地、滑动和接触冲击等问题,提出一种零冲击的足端轨迹规划改进算法,并实现了步态规划算法设计。步态规划根据步态中各腿间的相位关系,借助四足机器人运动学模型进行逆运动学解算,求出各腿的关节角度函数,利用机构的几何关系得到各液压缸伸缩量控制函数,对试验样机各腿进行伺服驱动控制,从而实现液压四足机器人的步态规划行走。仿真试验结果表明,在该策略驱动控制下液压四足机器人行走过程连续平稳,样机足端轨迹较为平滑,躯干起伏较小,证明了该足端轨迹规划方法用于四足机器人步态设计的合理性和有效性。  相似文献   

15.
分析了四足哺乳动物身体结构及运动方式,设计了一款四足仿生机器人。采用STM32F103VET6为核心的控制芯片构建硬件控制系统,利用芯片的通用定时器产生12路PWM波控制机器人各个关节运动。实验结果表明,四足机器人的12个关节运动平稳,对复杂运动步态的控制精确,实现了在地面的稳定运动。  相似文献   

16.
依据多足昆虫的身体结构和运动特性,设计出蜘蛛机器人的本体结构。遵循结构仿生和功能仿生原则,基于虚拟样机技术,应用SolidWorks软件建立蜘蛛机器人的仿真模型,并结合ADAMS对蜘蛛机器人的直线行走步态和定点转弯步态进行联合仿真,得出其运动步态控制舵机的运动角度,进而验证结构设计的合理性和运动步态的稳定性。所做研究为蜘蛛机器人的实物制作提供了理论基础。  相似文献   

17.
通过对蜘蛛结构及运动特性分析,设计了一款四足爬行机器人的结构模型;针对腿部机构构建的坐标系,对机器人的腿部模型进行运动分析,结合机器人的关节变量与足端对应的映射关系建立仿蜘蛛机器人足尖的步态轨迹方程;利用MDH法建立仿蜘蛛机器人的运动学模型,并通过adams对其进行模拟仿真;同时,利用梯度投影算法求解仿蜘蛛机器人的运动学方程,结果表明该机器人在空间的合成位移分布与复合摆线相符.通过matlab将机器人运动轨迹模型导入adams进行步态规划分析,结果表明机器人腿部的速度呈现一个个脉冲的形式,时间间隔小,运动速度均匀平稳.从而验证了运动控制方程是正确的,结构设计是合理的,仿生机器人的动作分解是可行的.  相似文献   

18.
通过分析仿生六足机器人典型行走步态,采用多舵机分时控制思想.利用AT89C52单片机和舵机设计出步态运动控制器.该控制器可驱动机器人足部12个舵机协调运动,实现全方位的六足步态.  相似文献   

19.
仿生机器人是机器人这一大领域的一个重要分支。本文根据全国大学生机器人大赛ROBOCON赛事规则的需求,设计了一款四足机器人,采用STM32F407VET6作为主控制器,对其行走系统和平衡控制做了研究。针对四足机器人的行走系统,选用了对角小跑的步态进行行走,通过跳跃的步态方式进行翻越场地内的障碍,并且介绍了四足机器人的平衡系统。并在上位机对各方面功能进行仿真,实现了四足机器人全自动行走以及翻越障碍。  相似文献   

20.
基于现有仿生四足机器人仿形度不高的问题,设计了一种外形结构和运动机理与仿生对象高度相似,且具备多自由度腿足和躯干的仿生四足机器人。通过对仿生对象的分析和研究,得到了机器人的自由度、结构模块、外形尺寸等参数,并基于这些参数进行头部、躯干、尾部、四足等模块的结构设计。对设计的机器人进行受力分析,确定机器人整体和四足结构设计的合理性。将设计的机器人加工制作并集成样机系统,开展样机的运动测试实验,验证了机器人设计的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号