首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
石墨表面金属化处理及检测   总被引:2,自引:0,他引:2  
石墨是一种较为理想的锂离子电池负极材料,但由于其与溶剂的相容性差等缺点,降低了电池的容量和寿命,研究发现,通过对石墨材料进行修饰与改性可有效提高石墨电极性能.介绍了在石墨表面进行金属化处理的方法以及处理后对石墨电化学性能的影响,并概括介绍了所包覆金属的检测方法,结果表明,石墨表面包覆一层金属后,不仅电阻率大大降低,且改善了电极在充放电过程中石墨体积的变化,降低了电极膨胀,电极热稳定性和循环性均得到了提高.  相似文献   

2.
采用有机溶剂醇热法,以异丙醇铝为原材料对LiCoO2进行表面处理.通过XRD、SEM对包覆前后正极材料的微观结构进行表征,对包覆前后正极材料的电化学性能进行测试.结果表明:包覆后正极材料的充放电效率明显提高,循环30次后容量保持率由包覆前的84.1%提高到包覆后的93.2%.这归因于包覆后LiCoO2表面形成的Al2O3或LiAlxCo1-xO2层,该层起到阻挡层的作用,有效地抑制Co4 与电解液反应,稳定了LiCoO2结构,提高了电化学循环性能.  相似文献   

3.
采用熔体快淬法制备Mg_(65)Ni_(27)La_8非晶电极合金带,采用氧化还原法成功制备石墨烯/纳米银复合膜(G/A),通过高能球磨将G/A膜成功引入电极合金进行表面包覆改性。通守X射线衍射仪、场发射扫描电镜、激光拉曼光谱仪和高分辨电镜表征显示:还原后的石墨烯呈卷曲的大片层结构,尺寸在2~5μm之间,银纳米颗粒均匀地分散在石墨烯片层上,尺寸在10~20nm之间。用恒流充放电的方法在三电极电池测试仪上测定其电化学循环性能,实验结果表明改性后合金表面的氧含量由21%降低为包覆后的10%,G/A膜有效阻止合金表面的腐蚀和粉化开裂,包覆改性后电极合金的极限电流密度提高了2.54倍,电极的接触阻抗降低87.2%,电极合金的最高放电容量由610.8mA·h/g上升为814.8mA·h/g,经过20个循环后的放电容量保持率由79.86%提升为85.76%,显著提高其电化学性能。  相似文献   

4.
采用球磨法将Sn-Co合金与石墨复合制备了Sn-Co/石墨复合材料,并对其进行热处理,研究了热处理温度对复合材料结构和电化学性能的影响。结果表明,Sn-Co/石墨复合材料由Co Sn相和石墨组成,Sn-Co合金一部分嵌入石墨颗粒内部,一部分吸附在石墨颗粒表面。电化学测试表明,Sn-Co/石墨复合材料兼具高容量和长循环寿命的优点,首次放电容量和库伦效率分别为349 m A·h/g和81.3%,经过25次循环后的容量保持率为88.3%。热处理导致Sn-Co合金的晶粒长大和Co3Sn2新相的出现,同时降低了复合材料的比表面积。当热处理温度为500℃时,首次放电容量和库伦效率分别为362 m A·h/g和83.6%,经过25次循环后的容量保持率达92.8%,表现出良好的结构稳定性。  相似文献   

5.
采用溶胶-凝胶法合成锂离子电池正极材料Li1.2(Mn0.54Ni0.16Co0.08)O2,并用Al F3对这种材料进行表面包覆改性。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨率透射电子显微镜(HRTEM)等表征材料的结构和形貌。结果表明,合成的Li1.2(Mn0.54Ni0.16Co0.08)O2具有典型的层状α-Na Fe O2结构,AlF3均匀包覆在Li1.2(Mn0.54Ni0.16Co0.08)O2材料表面,包覆层厚度为5~7 nm。电化学测试表明,包覆Al F3后材料的电化学性能得到提高,在1C倍率下,包覆的AlF3材料的首次放电容量为208.2 m A·h/g,50次循环后容量保持率为72.4%,而未包覆AlF3的材料的首次放电容量和容量保持率分别为191.7 m A·h/g和51.6%。  相似文献   

6.
采用溶胶-凝胶法合成锂离子电池正极材料Li1.2(Mn0.54Ni0.16Co0.08)O2,并用Al F3对这种材料进行表面包覆改性。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨率透射电子显微镜(HRTEM)等表征材料的结构和形貌。结果表明,合成的Li1.2(Mn0.54Ni0.16Co0.08)O2具有典型的层状α-Na Fe O2结构,AlF3均匀包覆在Li1.2(Mn0.54Ni0.16Co0.08)O2材料表面,包覆层厚度为5~7 nm。电化学测试表明,包覆Al F3后材料的电化学性能得到提高,在1C倍率下,包覆的AlF3材料的首次放电容量为208.2 m A·h/g,50次循环后容量保持率为72.4%,而未包覆AlF3的材料的首次放电容量和容量保持率分别为191.7 m A·h/g和51.6%。  相似文献   

7.
以硫酸为表面修饰剂,采用浸渍法对天然石墨进行表面修饰改性。傅里叶变换红外光谱仪(FTIR)分析结果表明,硫酸表面修饰的天然石墨表面—OH和C=C消失,—COO-数量增多。电化学性能测试结果表明,经硫酸表面修饰的天然石墨的循环性能和倍率性能均得到提高。经3 mol/L H2SO4处理12 h的天然石墨(NGS3)在0.5C下20次循环后脱锂容量为320.5 mA·h/g;而未经表面修饰的天然石墨(NG)在相同条件下的脱锂容量仅为299.9mA·h/g。采用交流阻抗谱对石墨进行嵌脱锂动力学研究,结果显示,经硫酸表面修饰的天然石墨膜电阻(RSEI)和电荷转移电阻(Rct)均减小,膜电容(CSEI)和双电层电容(CCPE)增加,多次循环后RSEI保持稳定,NG的活化能(Ea)为87.7kJ/mol,NGS3的Ea为77.2 kJ/mol,表明H2SO4修饰有利于锂离子去溶剂化能力的提高,并有利于形成稳定的固体电解质界面(Solid electrolyte interface,SEI)。  相似文献   

8.
采用在CeMg12中添加镍粉球磨制备非晶态合金,并研究化学镀表面包覆Ni对其电化学性能的影响.结果表明,非晶态CeMg12具有很高的电化学放电容量,CeMg12+200%Ni(质量分数)球磨50 h后复合电极材料电化学容量达到1209.6 mAh/g,但是电化学循环稳定性较差,10次循环保持率为37.26%.通过化学镀镍进行表面包覆能明显提高合金的综合电化学性能.化学镀表面包覆Ni后,合金10个循环的保持率上升到69.67%:同时由于添加的Ni和包覆Ni的共同催化作用,合金高倍率性能也得到了相应的提高,HRD900由原来的54.2%提升到72.4%;但是由于化学镀过程中部分合金被氧化,使复合合金的最大放电容量略有下降.  相似文献   

9.
为了改善富锂正极材料Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2电化学性能,采用燃烧法制备出了在Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2表面包覆一层不同含量的V2O5材料。利用扫描电镜(SEM),X射线衍射(XRD)和充放电循环测试对材料的形貌结构及其电化学性能进行分析。结果表明,包覆后所有正极材料均具有α-NaFeO_2型层状结构;当包覆量为12%时(质量分数),在2.0~4.8V电压范围内,在0.1C倍率充放电条件下测试,首次放电比容量为301.7mAh.g-1,经过50次循环后容量保持率为78.6%,与未包覆材料相比,首次库伦效率由原来的69.7%提高到81.6%。  相似文献   

10.
采用改进型原位限制聚合法制备具有核-壳结构的纳米LiFePO_4/C颗粒.。并通过XRD,HRTEM,电化学工作站等测试手段研究了所制备粉体的相组成,微观结构和电化学性能。XRD结果表明所制备的LiFePO4/C具有晶型完整的橄榄行结构,壳层炭为作晶。HRTEM照片显示所制备的LiFePO4/C粒径在18.2~54.5 nm之间,炭层均匀包覆在LiFePO4颗粒外表面,厚度在2~10nm之间。700℃合成的LiFePO_4/C核-壳材料的首次放电容量为142 mAh/g,经过40次充放电循环后,容量保持在132 mAh/g,容量保持率在93.0%。其充放电容量受电子导电、锂离子扩散速率的共同影响。  相似文献   

11.
A stable silicon dioxide film was coated on the surface of natural graphite anode by sol-gel method with Si(OCH2CH3)4, and effects of modification on performance of natural graphite were investigated. The structure and properties of graphite samples were determined by X-ray diffi'actometry(XRD), scanning electron microscopy(SEM), energy-dispersive X-ray spectroscopy(EDS) and electrochemical measurements. The modified graphite shows mainly the layer structure, and silicon dioxide film is amorphous. Compared with the pure natural graphite, the modified graphite exhibits the higher specific capacity of 366 mA-h/g. After 40 charge-discharge cycles, the capacity retention ratio of the modified graphite reaches 99.55%, while that of natural graphite is only 83.04%. The results indicate that the surface modification of natural graphite by SiO2 is effective for improving the electrochemical performance of the natural graphite anode for lithium ion batteries.  相似文献   

12.
以钛酸四丁酯和乙酸锂为原料,水热法制备前驱体,再经过短时间的高温煅烧制备Li4Ti5O12负极材料。利用XRD、SEM和恒电流充放电方法分别测定材料的结构、形貌以及材料的电化学性能。结果表明:制备出的产物Li4Ti5O12颗粒具有尖晶石型结构,其中800°C、6h烧结出的样品具有约800nm的粒径,并表现出优良的电化学性能,0.1C和5C首次放电容量分别达到158.7(mA.h)/g和109.3(mA.h)/g,不同倍率下循环20次容量保持率较好。  相似文献   

13.
Si-doped composite carbon as anode of lithium ion batteries   总被引:6,自引:2,他引:6  
1 INTRODUCTIONAdvancedrechargeablelithiumionbatteriesareattractiveforuseinconsumableelectronicandelectricvehicles(EV )becauseoffavorablecombinationofvoltage,energydensity ,cycling performance ,etc .Worldwideeffortshavebeendevotedtothestudyofcarbonmaterialsasanodesinthesebatteries .Amongavarietyofcarbonmaterials ,graphiteappearstobethemostsuitablecandidatebecauseofitshighcapaci ty ,lowandflatpotential[1,2 ] .Nevertheless ,therearestillsomeproblemswithrespecttothedestructionofthecarbonstr…  相似文献   

14.
采用固相反应法在惰性气氛下合成了橄榄石型LiFePO4及其Ni^2+掺杂正极材料,采用XRD,SEM和充放电等方法对目标材料进行了表征。XRD分析表明,掺杂少量Ni^2+后的LiFePO4晶体结构并未发生变化;SEM观察发现,掺杂后,样品的粒径变小;充放电测试得出,比未掺杂的LiFePO4具有更好的电化学性能,首次放电比容量达145mAh·g^-1,高于纯的LiFePO4正极材料的容量90mAh·g^-1,经100次循环后掺杂Ni^2+的LiFePO4和LiFePO4样品的容量保有率分别为91%和53%。  相似文献   

15.
报道了炭包覆锂离子电池正极材料LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2的新工艺。炭涂层由前驱体葡萄糖通过微波热解而形成。采用x射线粉末衍射(XRD)、扫描电镜、x射线荧光测试和恒流充放电测试来表征所制备的材料。XRD结果表明,炭包覆没有改变LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2材料的相结构。SEM结果表明,炭包覆的LiNit/3Mnl/3Col/302颗粒表面变得粗糙。充放电测试结果显示,炭包覆的LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2的循环性能与未包覆的相比得到提高。炭包覆的LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2在0.2C倍率下循环50次的容量保持率由84.8%提升到95.5%,且高倍率下材料的容量保持率得到提高。  相似文献   

16.
Silicon/flake graphite/carbon (Si/FG/C) composites were synthesized with different dispersants via spray drying and subsequent pyrolysis, and effects of dispersants on the characteristics of the composites were investigated. The structure and properties of the composites were determined by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The results show that samples have silicon/flake graphite/amorphous carbon composite structure, good spherical appearances, and better electrochemical performance than pure nano-Si and FG/C composites. Compared with the Si/FG/C composite using washing powder as dispersant, the Si/FG/C composite using sodium dodecyl benzene sulfonate (SDBS) as dispersant has better electrochemical performance with a reversible capacity of 602.68 mA·h/g, and a capacity retention ratio of 91.58 % after 20 cycles.  相似文献   

17.
LiMnPO4/C composites were synthesized via solid-state reaction with different carbon sources:sucrose,citric acid and oxalic acid.The samples were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM) and electrochemical performance test.The results of XRD reveal that carbon coating has no effect on the phase of LiMnPO4.The LiMnPO4/C synthesized at 600 ℃ with citric acid as carbon source shows an initial discharge capacity of 117.8 mAh·g-1 at 0.05 C rate.After 30 cycles,the capacity remains 98.2 mAh.g 1.The improved electrochemical properties of LiMnPO4/C is attributed to the decomposition of organic acid during the sintering process.  相似文献   

18.
Nano-sized silicon particles were uniformly coated onto a natural graphite surface by a 1 ton/month-based semi-mass production ball milling method in order to prepare Si-based anodes for Li ion batteries. The structure, surface morphology and Si coating properties of the as-synthesized powders were analyzed by XRD, Raman, SEM, TEM and EDS mapping tools. The initial gravimetric discharge capacity of the Si-coated graphite measured using a half cell was 761 mAh/g at a rate of 0.2 C. Additionally, the discharge capacity retention of a full cell system was 71.4% at a 1 C rate even after 300 cycles as well as 96.6% of initial coulombic efficiency. The cycled composite powders were further analyzed by SEM and EDS mapping techniques. This method is proposed for commercial extension to the manufacture of lithium secondary batteries.  相似文献   

19.
通过镁和氧化亚硅之间的氧化还原反应制备细硅,并采用湿法混料及高温热解法合成了锂离子电池用硅/石墨/裂解碳复合负极材料。利用XRD、SEM、电化学测试考察了复合材料的结构与电化学性能,并结合循环伏安和电化学阻抗技术研究了复合材料的电化学可逆性和动力学性能。结果表明:制备的复合材料首次可逆容量为880 mAh/g,循环40次后为780 mAh/g,容量保持率可达88.6%,该方法显著改善了硅基材料作为锂离子电池负极材料的电化学性能。性能的提高主要归因于纳米结构的硅均匀分散在碳基体中,很好地抑制了充放电过程中的体积效应,同时石墨和裂解碳也充分保证了复合材料良好的导电性。  相似文献   

20.
PEG固相还原制备LiFePO4及材料的电池性能   总被引:1,自引:1,他引:0  
本文首次采用PEG固相还原Fez0。成功地制备了LiFePO。锂电池用正极材料。通过XRD、SEM表征了材料的相态和形貌,采用恒电流充放电法研究了材料的电化学性能。SEM图上可观测到材料呈现出微米球形团簇结构和蜂窝状的表面;XRD结果表明,晶相为橄榄石型磷酸铁锂。对电池的电化学测试表明,制备的LiFeP0。材料表现出优良倍率性能和循环稳定性,在0.1C和O.3C下,放电比容量分别为139.9mAh/g和127.5mAh/g,30次循环后比容量没有衰减。这种以廉价铁盐Fe2O3的PEG固相还原制备,为锂电池正极材料LiFePO4低成本制备提供了新的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号