首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
《钢结构》2012,(5):76
目前,大多采用考虑蠕变的Harmathy蠕变模型进行耐火性分析。Harmathy蠕变模型仅能预测恒定应力下一定精度的蠕变,不适用于应力变化的情况。轴向约束钢柱遇到火灾时,火灾过程中应力将随着时间和温度的变化而迅速变化。该文研究了火灾下蠕变对轴向受压钢柱屈曲性能的影响。使用ANSYS软件中能够预测任何时间、应力或温度下钢材蠕变应力的蠕变模型来预测蠕变应力。分别对考虑和不考虑蠕变的情况进行数值模拟,并对两种情况下的屈曲温度和轴向变形结果进行对比分析。快火和慢火工况都考虑在内。研究结果显示,慢火工况下考虑蠕变的轴向约束钢柱屈曲温度高于不考虑蠕变的屈曲温度,快火工况下考虑蠕变的轴向约束钢柱屈曲温度可能高于也可能低于不考虑蠕变的屈曲温度。  相似文献   

2.
钢材高温蠕变是钢材在高温和应力作用下的塑性应变.高温蠕变会导致钢柱变形增大,耐火极限降低.为了考察高温蠕变对冷弯薄壁型钢柱抗火性能的影响程度,建立了考虑高温蠕变的抗火分析有限元模型,通过试验结果对有限元模型进行验证.利用模型研究了在不同荷载比、轴向约束刚度比、升温速率和火灾场景下,高温蠕变对冷弯薄壁型钢柱抗火性能的影响.研究表明,在有限元模型中考虑蠕变因素后,对于钢柱抗火性能的预测更为准确,更符合真实情况;在中等升温速率的火灾场景中,荷载比为0.3左右的无轴向约束钢柱因高温蠕变而引起的耐火极限的降低最为显著.  相似文献   

3.
王建军  詹子娜  李磊 《建筑科学》2020,36(1):117-122
室外钢结构受火情况特殊,采用标准火灾升温曲线加载过于保守,因此宜结合实际火灾场景考虑。本文结合火灾模拟软件FDS与有限元软件ABAQUS,分析了某高炉室内火灾场景下的空气温度场分布,获得了室外钢柱表面热烟气温度,并通过公式计算出考虑火焰辐射作用的钢柱升温;将得到的钢柱温度导入有限元力学模型进行热力耦合分析,研究了高温作用下钢柱的变形以及截面应力分布情况,分析了受火过程中钢柱轴向位移的变化特点,比较了荷载比对受火钢柱位移的影响,结果表明:钢柱高温下轴向变形可分为三个阶段,即膨胀、压缩和破坏阶段;钢柱受火后支座处截面应力最大,且各柱支座截面应力分布类似;荷载比越大,钢柱受火后轴向压缩变形越大。  相似文献   

4.
利用验证的有限元模型分析了轴向约束刚度比、轴力荷载比和钢柱长细比对火灾下轴心受压H形截面约束钢柱屈曲温度和破坏温度的影响,给出了其屈曲温度和破坏温度的计算方法。轴向约束刚度比对约束钢柱屈曲温度和破坏温度的影响可用指数函数表示,轴力荷载比和钢柱长细比对约束钢柱屈曲温度和破坏温度的影响可用多项式表示。采用有限元方法对计算公式进行了验证,设计公式计算结果与有限元分析结果吻合较好,且设计公式给出偏于安全的结果。  相似文献   

5.
约束钢柱抗火性能试验研究   总被引:5,自引:1,他引:4       下载免费PDF全文
介绍了一组约束钢柱抗火试验,包括试验设计、钢柱温度和位移测量结果、钢柱试验后残余变形,以及试验的数值模拟等。试验变化参数为钢柱所受约束的刚度。约束刚度大小对钢柱抗火性能的影响包括:约束刚度比大的钢柱,其屈曲温度和破坏温度均较低;钢柱屈曲后,约束刚度比大的钢柱在变形较小时即可达到新的平衡位置;约束钢柱的破坏温度一般高于其屈曲温度,且随轴向约束刚度比的增大,破坏温度与屈曲温度之差增大。试验结果与有限元分析结果进行了对比,两者吻合较好,有限元方法研究约束钢柱抗火性能具有较高的精度。  相似文献   

6.
利用经试验验证的ABAQUS有限元模型,对轴心压力作用下的轴向约束高强钢柱受火后的剩余承载性能进行了参数分析,考虑了过火温度、荷载比、轴向约束刚度比、长细比以及高强钢材强度等级等参数的影响。参数分析结果表明:当过火温度小于屈曲临界温度时,受火过程对轴向约束钢柱的轴压承载力没有影响;当过火温度大于屈曲临界温度时,钢柱的轴压剩余承载力会明显减小,且随着过火温度的升高,剩余承载力逐渐降低;轴向约束刚度比和长细比对约束钢柱的过火温度为屈曲临界温度时对应的轴压剩余承载力影响显著;荷载比对约束钢柱的过火温度为破坏临界温度时对应的轴压剩余承载力影响明显;高强钢材强度等级对约束钢柱受火后轴压承载力影响较小。根据参数分析所得数据及规律,提出了超500MPa高强钢轴向约束柱受火后轴压剩余承载力的简化计算方法,将计算结果与有限元分析结果对比,验证了该简化计算方法的可靠性。  相似文献   

7.
利用经试验验证的ABAQUS有限元模型,对轴心压力作用下的轴向约束高强钢柱受火后的剩余承载性能进行了参数分析,考虑了过火温度、荷载比、轴向约束刚度比、长细比以及高强钢材强度等级等参数的影响。参数分析结果表明:当过火温度小于屈曲临界温度时,受火过程对轴向约束钢柱的轴压承载力没有影响;当过火温度大于屈曲临界温度时,钢柱的轴压剩余承载力会明显减小,且随着过火温度的升高,剩余承载力逐渐降低;轴向约束刚度比和长细比对约束钢柱的过火温度为屈曲临界温度时对应的轴压剩余承载力影响显著;荷载比对约束钢柱的过火温度为破坏临界温度时对应的轴压剩余承载力影响明显;高强钢材强度等级对约束钢柱受火后轴压承载力影响较小。根据参数分析所得数据及规律,提出了超500 MPa高强钢轴向约束柱受火后轴压剩余承载力的简化计算方法,将计算结果与有限元分析结果对比,验证了该简化计算方法的可靠性。  相似文献   

8.
Engineering Structures加热速率和边界约束对有蠕变的钢柱的抗火性能的影响Zhan-Fei Huang,Kang-Hai Tan,Seng-Kiong Ting(新加坡)该文对承受轴向荷载为主的热约束钢柱进行了一系列数值分析。研究的参数包括钢柱的长细比,轴向约束比,转动约束比以及轴向荷载利用系数。在热加载机制方面,采用了截面均布受热的形式,因为柱子通常是四面受火。应用程序FEM-FAN2D进行有限元分析,并明显地考虑了蠕变应变。以横截面应力和应变的发展解释了热约束钢柱的性能。另外,还研究了蠕变对于钢柱应力、应变、内力以及临界温度的影响。研究表明在某些…  相似文献   

9.
对火灾升温条件下压弯约束钢柱的轴力和截面弯矩发展规律进行了研究,给出了确定其屈曲温度和破坏温度的简化方法。约束钢柱屈曲前,随着温度升高钢柱轴力线性增加,截面弯矩基本保持不变;约束钢柱屈曲后,钢柱轴力减小,截面弯矩突然增大,钢柱处于轴力和弯矩共同作用下。确定屈曲温度时,采用无约束压弯钢柱屈曲温度的计算公式,钢柱轴力考虑轴向约束的影响;确定破坏温度时,破坏准则采用截面屈服条件表示的轴力-弯矩相关关系,轴力取初始轴力。利用有限元方法对本文公式进行了验证,对通常情况下的约束钢柱(荷载比小于0.7,约束刚度比小于0.1),本文方法与有限元方法计算结果吻合较好。  相似文献   

10.
截面温度不均匀钢柱火灾下将发生热弯曲及扭转屈曲破坏,同时对热变形的约束导致钢柱内在升温阶段产生附加压力,在降温阶段出现附加拉力。分别考虑3种约束刚度比和3种截面温度分布形式,进行了9根受约束钢柱的抗火试验,量测了受约束钢柱达到最大轴力时的温度(屈曲温度)、轴力恢复至初始荷载对应的温度(临界温度)及破坏温度,研究其在火灾升温和降温阶段的受力性能、破坏特征。试验结果表明,截面温度不均匀导致钢柱在绕截面对称轴弯曲时同时发生扭转;约束刚度比越大,钢柱的屈曲温度越低,破坏温度与屈曲温度之差越大;截面温差越大,钢柱屈曲温度和破坏温度越高。同时对试验钢柱进行了有限元分析,分析结果与试验结果基本一致,验证了所建立的有限元分析模型的正确性。  相似文献   

11.
给出了确定轴压约束钢柱在火灾升温条件下屈曲温度和破坏温度的简化计算方法,采用有限元方法、相关研究者的研究成果和试验结果对计算方法进行了验证。约束钢柱屈曲前,随着温度升高,轴力线性增加,截面弯矩很小并保持不变,采用无约束钢柱屈曲温度计算公式确定其屈曲温度,钢柱轴力考虑轴向约束的影响;约束钢柱屈曲后处于轴力和弯矩的共同作用下,利用截面屈服条件表示的轴力-弯矩相关关系确定其破坏温度,钢柱轴力取升温前初始轴力。本文方法计算结果与有限元分析结果和其他研究人员的研究成果吻合较好,与试验结果的比较表明本文方法偏于安全。  相似文献   

12.
通过对端部约束H型钢柱火灾响应及火灾后力学性能的对比试验研究,分析了不同约束条件对H型钢柱火灾行为及受火后力学性能的影响。试验测定了钢柱的温度响应及位移响应,在此基础上进一步开展了火灾后的力学性能试验。结果表明:钢柱在升温和降温过程中存在一定的滞后性,火灾升温时柱顶位移按自由膨胀、对称约束及不对称约束依次减小;约束性质对火灾后H型钢柱的力学性能有明显的影响,对称约束的H型钢柱在火灾后的应变明显不同于非对称约束的情况,而且非对称约束钢柱压曲破坏前的整体刚度明显高于对称约束;无约束H型钢柱受火后的整体屈曲主要沿弱轴方向弯曲,而约束H型钢柱受火后的整体受压屈曲则沿两个方向均有明显的侧向弯曲,且沿弱轴方向的受压曲线基本呈三角形,绕强轴方向则为S形。  相似文献   

13.
钢材在高温和荷载作用下产生明显蠕变变形,影响火灾中结构的变形和受力性能。现有的蠕变模型较多,但没有一个广泛适用的蠕变模型。不同的蠕变模型对钢结构抗火分析结果有很大影响。为了量化蠕变模型对约束钢梁抗火性能分析的影响,对5种常用的蠕变模型进行了对比分析。采用编写的约束钢梁计算程序,分别计算5种蠕变模型下约束钢梁的抗火性能并与试验数据进行对比。结果表明,采用Norton蠕变模型的计算结果与试验数据吻合最好。最后对影响约束钢梁抗火性能参数进行了研究,研究发现,Harmathy蠕变模型对约束梁抗火性能分析结果影响最大;不同蠕变模型对不同荷载比、约束刚度下的约束钢梁抗火性能影响程度均不同。  相似文献   

14.
高温蠕变对火灾下钢构件的内力和变形影响较大,现行《建筑钢结构防火技术规范》(GB51249—2017)中未考虑蠕变对钢柱高温承载力的影响。采用ANSYS软件分析考虑蠕变后钢柱在高温下的受力性能,并与钢柱的抗火试验进行对比,发现考虑蠕变的钢柱有限元模拟结果与试验数据吻合更好。利用验证的有限元模型进行参数分析,结果表明:考虑蠕变效应后,钢柱的高温承载力受初始缺陷(残余应力、初弯曲、初偏心)、弯曲方向、荷载比、长细比、升温速率的影响较大,受截面形式和钢材屈服强度的影响较小。给出了考虑蠕变效应后计算钢柱高温承载力的简化方法。  相似文献   

15.
承受荷载的钢结构在火灾下可发生明显的蠕变变形,钢结构中的焊接残余应力在火灾下也会一定程度地释放,因而高温蠕变变形和残余应力会对钢柱的耐火性能产生影响.为了准确地对高强度Q460钢柱进行抗火设计,有必要定量分析高温蠕变和残余应力释放对钢柱承载力的影响.采用电炉对2根焊接H形Q460钢柱进行耐火试验,得到无保护Q460钢柱...  相似文献   

16.
设计了3根截面尺寸、长度均相同的Q550高强度钢柱,其中两根受到轴向约束,并对其进行了恒载作用下升温、降温的受火全过程试验,以及自然降温至室温后的轴压剩余承载力试验,对未受火的钢柱进行了常温下的极限承载力试验。研究了高温试验中钢柱的轴向位移-温度和中点侧向挠度-温度关系、极限承载力试验中钢柱的轴力-轴向位移和轴力-柱中点侧向挠度关系,并进行了有限元模拟。试验以及有限元模拟分析显示,若约束钢柱在高温过程中发生屈曲,则降温后钢柱会有明显的残余弯曲变形,并且柱中截面会产生比初始残余应力更为显著的残余应力,从而显著降低钢柱的剩余承载力和轴向刚度。试验结果与有限元分析结果吻合较好,验证了有限元分析模型的有效性。  相似文献   

17.
设计了3根截面尺寸、长度均相同的Q550高强度钢柱,其中两根受到轴向约束,并对其进行了恒载作用下升温、降温的受火全过程试验,以及自然降温至室温后的轴压剩余承载力试验,对未受火的钢柱进行了常温下的极限承载力试验。研究了高温试验中钢柱的轴向位移-温度和中点侧向挠度-温度关系、极限承载力试验中钢柱的轴力-轴向位移和轴力-柱中点侧向挠度关系,并进行了有限元模拟。试验以及有限元模拟分析显示,若约束钢柱在高温过程中发生屈曲,则降温后钢柱会有明显的残余弯曲变形,并且柱中截面会产生比初始残余应力更为显著的残余应力,从而显著降低钢柱的剩余承载力和轴向刚度。试验结果与有限元分析结果吻合较好,验证了有限元分析模型的有效性。  相似文献   

18.
《钢结构》2010,(9)
通过大量的数值分析,研究了求解轴力或轴力与弯矩共同作用下,约束钢柱屈曲温度和破坏温度的实用设计方法。设计中,考虑附加轴向压力并限制热伸长,采用火灾中自由柱的设计方程计算约束柱的屈曲温度。计算约束柱的破坏温度时,引入了轴向屈服力与塑性弯矩的相关曲线。将不同情况下该方法的分析结果与ABAQUS软件的模拟结果进行对比,可知二者吻合较好。  相似文献   

19.
《工业建筑》2016,(7):74-80
钢材在高温和荷载作用下产生明显的蠕变变形,从而对钢结构在火灾下的变形和受力性能产生较大的影响。为了研究高温蠕变对高强度Q460钢柱抗火性能的影响,采用ANSYS有限元程序建立了考虑蠕变的钢柱抗火分析模型,利用普通钢柱试验数据对其进行了验证。引入高强度Q460钢材在高温下的力学参数和高温蠕变参数,利用有限元方法进行了考虑蠕变效应的高强度Q460钢柱在多个参数下的抗火分析,与普通钢柱和现行CECS 200∶2006《建筑钢结构防火技术规范》的计算结果进行了对比。结果表明:长细比、荷载比、升温速率对考虑蠕变效应后高强度Q460钢柱的抗火性能有明显的影响。高强度Q460钢柱的抗火性能优于普通钢柱,CECS 200∶2006中钢柱的抗火设计结果不适用于高强度Q460钢柱。  相似文献   

20.
为分析真实火灾下整体钢框架结构的耐火性能,设计了一个平面尺寸为6 m×6 m、单层层高为3 m的两跨两层钢框架足尺结构,并进行三种火灾工况下的真实火灾试验,研究了住宅火灾、仓库火灾及无防护火灾条件下的试验现象、实际温度场和力学响应。结果表明:真实火灾下钢框架的升温曲线与标准升温曲线有较大差别;受火房间的空气温度沿竖直方向呈现不均匀分布,沿水平方向温度趋于相同;防火保护使构件表面温度滞后于火场温度,且表面温度峰值和峰值后的下降速率均小于无防火保护构件的;火荷载密度增大及防火保护的缺失都将增加钢梁轴向的温度差,但不影响沿钢梁和钢柱截面方向以及钢柱轴向的温度梯度变化规律;钢梁和混凝土板相较钢柱具有更高的温度;钢框架结构设计应充分考虑防火保护,且可适当考虑墙体对建筑抗火性能的有利作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号