首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
基于三维有限元非线性方法,考虑某高面板堆石坝面板分期施工浇筑的特点,建立精细模拟面板特性的子模型,用有厚度的接触面单元模拟坝体与面板的接触面,设置相应的连接单元模拟面板缝的相互作用,分析了该面板堆石坝在施工期和蓄水期坝体和面板的应力变形,并与类似坝高的面板堆石坝的计算或监测结果进行比较。结果表明:在施工期和蓄水期坝体的最大沉降值约为坝高的1%,位于次堆石区;面板应力以压应力为主,拉应力主要集中在面板与周边山体连接处;周边缝的最大错动剪切变形、最大张拉变形及最大沉降剪切变形均未超过30 mm。  相似文献   

2.
云荞水库面板堆石坝三维非线性应力与变形分析   总被引:1,自引:0,他引:1  
采用非线性有限元分析方法,对云南云荞水库面板堆石坝坝体及面板在施工期和蓄水期的应力变形特性进行了较为深入的研究。根据三维计算分析的结果,可以得出如下结论:在各计算方案情况下,坝体在蓄水期的累积垂直位移为0.3m左右,大、小主应力的最大值分别为1.17MPa和0.39MPa,面板的最大挠度为6.9cm,周边缝的位移一般2均在毫米量级。从应力变形分析的角度看,这样的数值均在合理范围内,坝体断面设计的方案基本上是可行的。  相似文献   

3.
苗家坝混凝土面板堆石坝三维应力变形分析   总被引:1,自引:0,他引:1  
基于邓肯—张E-B模型,考虑坝体填筑施工和蓄水过程,并基于大型有限元软件ADINA平台,将三维子模型法应用于苗家坝面板堆石坝应力变形计算,并与监测资料和类似工程的计算结果作了对比分析。结果表明:子模型法能够大大减少网格数量,提高计算效率,面板及接缝的计算精度也有了提高;坝体最大沉降值约占坝高的1.1%,且沉降在竣工期已经基本完成;水库蓄水后,面板拉应力主要集中在面板与周边山体连接处,且最大拉应力均未超过2 MPa,建议通过增加面板的配筋,铺设粉煤灰或者细沙作为保护层来改善面板应力特性。周边缝变形最大值均未超过20 mm,止水结构不会因周边缝的变形过大而破坏。  相似文献   

4.
以在建的阿不都拉面板堆石坝工程为例,采用薄层接触单元来模拟其板间缝、周边缝、面板与垫层接触面建立三维仿真模型,研究蓄水期该坝板间缝和周边缝的变形发展规律,研究结果表明:阿不都拉面板坝满蓄期板间缝剪切错动变形最大值为0.73 mm,位于两岸基岩变坡点附近,张拉变形最大值为2.49 mm,位于河谷两岸附近,压缩变形最大值为-4.09 mm,沉陷错动变形最大值为4.76 mm,均位于河床中央附近;周边缝剪切错动变形最大值为4.00 mm,靠近基岩变坡点,张拉变形最大值为12.00 mm,沉陷错动变形最大值为-32.00 mm,均位于右岸52号周边缝上端;其缝张压、剪切变形值与相近坝高面板坝相比均处在同一毫米数量级,沉陷变形数值小于同类坝型工程。研究成果以期指导类似坝体板间缝和周边缝的设计。  相似文献   

5.
某混凝土面板堆石坝坝高144m.河谷地形复杂。采用三维非线性有限元法,建立了坝体和坝基的三维有限元模型.模拟了大坝填筑施工过程和水库蓄水过程.分析了运行期面板的应力变形及周边缝的变位特性,研究了复杂地形条件对该坝面板应力和变形的影响。计算表明:该混凝土面板堆石坝的面板应力受地形的影响较大,与坝体断面几何形态密切相关。左岸次堆石区变形大.面板应力较大,而右岸岩体的支撑作用显著,面板应力较小。右岸陡坡处及左右岸变坡处周边缝的变形较大。  相似文献   

6.
吉林台一级水电站混凝土面板堆石坝的坝体和面板在施工期及蓄水期的变形监测数据显示:坝体最大沉降量为77.1 cm,最大沉降率为0.948%。经分析得知,沉降主要大受坝填筑材料和水库蓄水的影响,且混凝土面板的垂直接缝、周边缝、钢筋应力、挠曲变形随水位抬升呈规律性变化,并与坝体内部变形监测数据相吻合。该监测数据为分析整体大坝变形形态提供了依据。  相似文献   

7.
针对纳子峡面板砂砾石坝实际情况,采用三维非线性动力有限元法,建立了大坝的三维有限元模型,计算了大坝在设计地震作用下的地震响应。根据面板坝土石料的三轴试验结果,选用坝料的残余应变模式,建立了同时计入残余体应变和残余剪应变的面板砂砾石坝地震永久变形计算模式,应用应变势概念及其相应的整体变形计算方法,计算预测了纳子峡面板坝的地震永久变形,分析了坝体地震永久变形的量值和分布规律。结果表明,大坝在7.5度地震作用下具有较好的抗震能力,其永久变形能够满足工程需要。  相似文献   

8.
泗南江水电站混凝土面板坝三维有限元分析   总被引:1,自引:0,他引:1  
杨玲  赵亚明  王飞 《人民长江》2012,(Z1):189-191
泗南江水电站大坝为混凝土面板堆石坝。采用Duncan E-B非线性模型对坝体进行三维有限元应力应变分析,并考虑了混凝土面板与垫层料之间的接触面特性。通过分析,得出竣工期和蓄水期坝体的应力变形,以及蓄水期混凝土面板的应力、变形和面板周边缝及垂直缝的变形。依据计算结果分析评价了混凝土面板堆石坝的应力变形性状。评价结果表明,泗南江水电站混凝土面板坝的设计是合理的。  相似文献   

9.
纳子峡面板砂砾石坝地震反应特性有限元分析   总被引:1,自引:1,他引:0  
采用三维非线性动力有限元法,对纳子峡水利枢纽面板砂砾石坝的地震反应特性进行了计算分析,获得了该坝在设计地震作用下的动力反应,包括坝体和面板的加速度反应、位移反应、应力反应,以及周边缝和面板接缝的位移反应等.在50a超越概率10%地震作用下,坝体顺河向的最大加速度反应为6.8 m/s2,位移反应为59 mm,剪应力反应为...  相似文献   

10.
万安溪面板堆石坝原型观测资料分析   总被引:3,自引:0,他引:3  
万安溪面板堆石坝最大坝高93.8m,坝顶长210m,1990年12月开工,1994年8月开始蓄水,在施工期及运行初期布置了各种类型的观测设备,其中包括坝体内部和外部的位移观测,面板周边缝位移和板间缝开合度观测,面板应力和应变观测,大坝渗流量观测,以及面板上部裂缝监测,通过对1999年观测资料的分析和评价,表明坝体变形总体正常,面板大部区域是压应变,渗流量小而稳定。  相似文献   

11.
三峡二期厂坝工程混凝土施工质量控制   总被引:3,自引:0,他引:3  
三峡二期厂坝工程是三峡工程是最重要的施工项目之一,混凝土浇筑量大,共约1238万m^3;施工强度高,预计量高年强度达400万m^3,最高月强度达45万m^3;质量要求严。经对坝和厂房结构特点及控制性工期分析,明确了控制混凝土质量的难点,据此采取了相应的工程措施,如合理选用混凝土浇筑设备、施工方案,高温季节温控防裂等,使所浇混凝得到有效控制,施工质量满足了设计要求。  相似文献   

12.
陈晖  黄燕  沈燕舟 《人民长江》2003,34(12):4-5
影响水面线及槽蓄曲线的因素可概括为河段自然地理状况及水流情势.随着水利水电工程的开发建设,人类活动影响日益凸现.以三峡工程坝址以上河段为例,根据三峡库区大量实测地形和水文资料,遵循水力学分析原理和方法,建立数学、物理模型,研究三峡坝址以上河段在天然、葛洲坝单独蓄水运行、三峡工程二期导流3个不同时期的水面线和槽蓄曲线,探讨了两项水利工程建设对上游槽蓄曲线的影响.分析表明,受工程影响,同蓄量水位抬高,同水位蓄量减小.三峡坝址至双江河段蓄量同为40亿m\+3,天然时期坝址水位为63.05 m,葛洲坝蓄水后坝址水位抬高6.38 m,三峡工程二期导流时期坝址水位抬高达8.71 m.  相似文献   

13.
天荒坪抽水蓄能电站下库坝为混凝土面板堆石坝,该坝于1994年3月截流,1997年建成,该工程施工严格按施工规程进行,面板坝上游各区堆石采用“金包银”的施工方法,以确保过渡料对垫层料的反滤作用,面板坝的按施工规程进行,面板坝上游各区堆石采用“金包银”的施工方法,以确保过渡料对垫层料的反滤作用,面板坝的漏水量是衡量面板坝质量的最重要指标,因此,结合天荒坪工程实际重点讨论了面板坝的漏水处理及漏水源分析,天荒坪下库坝是我国首先有用1m宽垫层料的工程之一,经过漏水考验,证明设计和施工都是成功的。  相似文献   

14.
采用三维静力有限元法,基于邓肯-张非线性弹性模型,模拟了双江口高心墙堆石坝在竣工期、蓄水期的应力与变位.研究了应力分布和极值应力的量值、区位.计算结果最大沉降变位为2.907m,约占坝高0.93%,与类似工程相比沉降占坝高百分比较小.对上游堆石应力水平较高区域给出了工程建议.  相似文献   

15.
官地水电站拦河大坝为碾压混凝土重力坝,最大坝高168 m,工程建设规模大、工期紧、施工条件复杂。这对施工质量与进度控制提出了较高要求。因此,建设单位创新地开发完成了“碾压混凝土坝施工质量与进度实时控制系统”,并在官地工程实践中成功应用,实现了对于大坝施工过程中主要质量参数的有效监控以及大坝施工进度的实时控制,保证了高质量、高效率的大坝施工,提升了工程管理水平。  相似文献   

16.
团山水库面板堆石坝最大坝高50m,大坝在施工期混凝土面板产生较多非结构性裂缝。经对裂缝进行检测和钻孔压水试验分析,认为施工期面板较长累计变形收缩量较大、表面止水施工期间养护效果不佳和施工速度快是引起面板裂缝的主要原因。文章选择研究低压灌浆修补和裂缝表面封闭相结合的处理方案,经现场检查和压水试验分析成果表明:裂缝处理效果好,蓄水试验运行未见明显裂缝,水库运行状况稳定。  相似文献   

17.
为研究塑性混凝土心墙坝的应力变形特性,通过选取合适的本构模型、接触单元、施工过程和蓄水过程模拟方法等,结合工程实际,运用三维非线性有限元法对大坝应力变形进行计算分析。研究结果表明:在竣工期和蓄水期,坝体的水平位移及垂直位移的分布特征与一般均质土坝一致;大坝的大主应力均为压应力,从坝面向坝内应力逐渐增大,且最大值发生在坝体底部心墙附近;小主应力除局部存在较小的拉应力外,其余均为压应力。  相似文献   

18.
沟后水库溃坝原因初步分析   总被引:1,自引:0,他引:1  
刘杰 《人民黄河》1994,17(7):28-32
沟后水库总库容330万m^3,大坝为钢筋混凝土面板砂砾石坝,坝高71m。1993年8月27日晚溃坝。初步分析溃坝原因是:渗流沿坝体上部施工层面逸出造成管涌破坏,并冲刷坝坡引起坝顶局部滑动,形成初期溃口,然后库水由口门大量下泄,进一步冲刷坝体,最终溃坝,设计时采用的控制砂砾石最大粒径的办法不可能起到控制砂砾石渗透性的作用。混凝土面砂砾石坝渗流控制的成功经验是在坝体中专门设置排水体。  相似文献   

19.
为了减少坝基渗漏,泽城西安水电站工程混凝土面板堆石坝的坝基设置了混凝土防渗墙。墙长191.50m,墙厚1.0m,最大墙深52m。文中叙述了防渗墙施工的总体布置,防渗墙施工方法及其在施工过程中的质量控制。  相似文献   

20.
文军  李榕  赵诗茹 《红水河》2012,31(3):38-42
斜卡面板堆石坝最大坝高110 m,坝基覆盖层深厚(45~108 m),基岩结构松散,渗透性较强。采用有限元法,对斜卡面板堆石坝及坝基进行了三维渗流及应力应变计算分析,讨论了帷幕厚度、深度与渗透系数对坝基渗流场的影响,分析了防渗墙在施工蓄水过程中的变形趋势以及趾板的沉降规律。结果表明,帷幕是防渗的薄弱环节,帷幕渗透系数增大与深度减小会使总流量显著增加;增大帷幕厚度可较大程度减小渗流量。防渗墙竣工期向上游变位,蓄水期受水推力作用向下游变形。防渗墙与连接板接合部位发生错动,但量值不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号