首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
为了研究破片冲击起爆屏蔽B炸药的比动能阈值,采用六棱柱和圆柱钨合金破片冲击带有40Cr炸药盒的B炸药,并测量了B炸药的速度阈值。根据比动能的计算方法,得到破片冲击起爆屏蔽B炸药的比动能阈值范围。运用Autodyn-3D软件和点火增长Lee-Tarver模型,计算了两种破片在垂直侵彻和最大迎风面积两种状态下的比动能阈值,重点研究了最大迎风面积状态下破片冲击起爆屏蔽B炸药的比动能阈值随长径比的变化规律。结果表明,六棱柱破片的比动能阈值低于圆柱破片;随着长径比的增加,破片冲击起爆屏蔽B炸药的比动能阈值先增加后减小。  相似文献   

2.
背板材料及炸药厚度对破片冲击起爆8701炸药装药的影响   总被引:1,自引:0,他引:1  
为了研究背板材料及炸药厚度对破片冲击起爆8701炸药装药的影响,设计了单一破片和双破片冲击起爆屏蔽8701装药的试验。采用AUTODYN-3D软件进行数值模拟,通过改变背板材料及炸药厚度,来改变背板反射波的幅值,探究其对装药起爆阈值的影响。试验结果表明,在本研究装药结构下,除双破片撞击产生的冲击波叠加作用影响装药起爆的速度阈值外,背板反射波亦影响装药起爆的速度阈值。模拟结果表明,临界起爆速度随背板波阻抗的增大而减小;随炸药厚度的增大,背板反射波的作用逐渐减弱,当炸药厚度增大到30mm时,靠两钨球撞击产生的冲击波叠加起爆装药,背板对双破片冲击装药的临界起爆速度几乎无影响。  相似文献   

3.
带壳B炸药在钨珠撞击下冲击起爆的数值模拟   总被引:1,自引:0,他引:1  
基于L ee-T arver点火增长模型,对直径分别为9、14、18和25mm的钨珠撞击带钽壳B炸药的过程进行了数值模拟,计算出了引爆B炸药的阈值速度,计算值与试验值相符合。探讨了B炸药在钨珠撞击下的起爆机理,结果表明,随着钨珠尺寸的增大,引爆B炸药的钨珠撞击阈值速度呈指数规律减小;当钨珠以引爆阈值速度撞击炸药时,随着钨珠直径的增大,炸药发生爆轰的时间逐渐推后,爆轰增长速度逐渐变慢。从钨珠撞击引爆炸药的机制来说,炸药点火是压力波的峰值压力和持续时间共同作用的结果,峰值较低的压力波作用较长时间也可以引爆炸药。  相似文献   

4.
为了研究不同尺寸下含TNT类炸药在撞击作用下的安全性能,用2 kg弹丸分别对TNT炸药以及不同尺寸B炸药进行Steven试验,并用锰铜压力计测试了样品的压力变化过程,用高速摄像机记录了点火反应过程,用冲击波超压传感器测量了炸药的反应超压,分析了TNT炸药和B炸药的响应规律。结果表明,Steven试验中B炸药的尺寸变化对射弹起爆速度阈值有显著影响,随着B炸药厚度的增加,其射弹起爆速度阈值随之降低,反应超压增加。  相似文献   

5.
模拟破片撞击下PBX-2炸药的响应规律   总被引:1,自引:0,他引:1  
为了研究炸药在不同速度破片撞击环境下的安全性能,设计了小弹丸撞击方式模拟破片作用,对PBX-2炸药进行了撞击试验。采用锰铜压力计测试样品中的压力变化,通过高速录像照片分析了点火反应过程,用冲击波超压传感器测量了炸药的反应超压,获得不同速度模拟破片撞击下炸药的响应规律。结果表明,模拟破片试验中PBX-2炸药反应程度明显高于枪击试验;建立的模拟破片撞击试验方法为评估炸药在异常环境下的安全性能提供了一种新的技术途径。  相似文献   

6.
固体炸药冲击起爆研究   总被引:5,自引:2,他引:3  
为了研究固体炸药冲击起爆特性,对JO-9159炸药进行了隔板冲击加载实验,用高速摄影方法记录炸药冲击起爆过程;用解析计算方法分析了有机玻璃隔板的临界厚度值;建立了炸药冲击起爆模型,对起爆过程进行了数值模拟,计算了炸药在冲击作用下的压力历史,分析了JO-9159炸药起爆压力阈值和爆轰成长距离。  相似文献   

7.
聚能射流引爆屏蔽PBX的实验研究   总被引:3,自引:0,他引:3  
为得到聚能射流引爆屏蔽PBX和B炸药的临界条件,采用某制式聚能装药对不同厚度屏蔽板屏蔽的PBX和B炸药进行了侵彻引爆实验,得到屏蔽炸药临界引爆的屏蔽板厚度;通过闪光X射线照相实验测定了与临界屏蔽板厚度相对应的射流穿靶后的剩余射流头部速度和直径,得出引爆屏蔽PBX和B炸药的射流引爆判据u^2d分别为38.4mm^3/μs^2和15.5mm^3/μs^2。将B炸药射流引爆判据的实验数据与文献报道数据进行对比,证实了实验结果的正确性。此外,在临界屏蔽板厚度相同条件下,对装药厚度不同的屏蔽PBX和B炸药进行了侵彻引爆实验,结果表明,药柱厚度变薄,不利于聚能射流引爆炸药。  相似文献   

8.
聚能装药逆向环形起爆射流形成的数值计算   总被引:4,自引:0,他引:4  
王利侠  胡焕性  孙建 《火炸药学报》2001,24(2):37-38,47
用LS-DYNA程序对小长径比聚能装药逆向环形起爆时形成高速射流以及正向起爆时形成低速射流进行了三维数值模拟,计算结果与实验吻合,计算的逆向起爆形成射流头部速度为8.78km/s,而正向起爆形成的射流头部速度为4.86km/s。数值模拟证明:长径比聚能装药逆向环形起爆时形成高速金属射流是可行的。  相似文献   

9.
破片轴向飞散战斗部破片速度的分布规律   总被引:2,自引:0,他引:2  
用数值模拟和试验两种方法研究了不同装药长径比的破片轴向飞散战斗部在单点起爆与平面起爆两种起爆方式下的速度分布特征.结果表明,装药端面中心位置处破片速度最高,沿径向大致呈抛物线趋势衰减;随着长径比的增大,破片速度增大,但增大幅度趋缓;相对于中心单点起爆,平面起爆提高了装药爆轰的瞬时度,减弱了爆轰产物气体侧向稀疏作用,能够有效提高破片速度,且速度增益在中心位置处最大,沿径向增益趋缓;就装药结构来说,长径比越大,速度增益越小,平面起爆能够更有效地提高小长径比战斗部的破片速度增益.  相似文献   

10.
钨合金破片撞击复合靶后装药的实验研究   总被引:1,自引:1,他引:0  
利用杀伤战斗部所产生的高速钨合金破片撞击复合靶后装药(铸装H-6炸药),以期观测复合靶后装药是否产生爆燃现象。利用工业CT分析了钨合金破片对复合靶后装药的侵彻情况。结果表明,虽然钨合金破片具有了较高的速度,但在贯穿一定厚度复合靶时,其动能急剧下降并产生了破裂,这是未能起爆靶后装药的一个主要原因。  相似文献   

11.
The stopping power rises in symmetric sandwiches with increasing explosive layer thickness, which is equivalent to higher plate velocities. Further the additional weight is a burden for add‐on armor. Therefore a study was made with very thin sandwich plates of 1 mm as more or less the minimum, what can be used in practice. The reduction effect is more reduced with thicker plates at constant explosive layer thickness. For the penetration reduction the product of plate thickness and plate velocity seems important, as a thumb rule.  相似文献   

12.
为研究包覆式活性破片撞击双层铝靶的毁伤效应和机理,利用14.5 mm弹道枪,开展了同质量、同尺寸的惰性钢破片、钢包覆金属/聚合物型活性破片以不同着靶速度侵彻3 mm+3 mm双层间隔铝靶的实验,分析了活性破片冲击双层间隔铝靶的点火及毁伤机理。结果表明,当破片着速为491~1391 m/s时,两型破片对前靶的穿孔形态和机理相同,为圆孔及冲塞型穿孔,孔直径以及孔直径随着速变化规律也基本相同;当破片着速大于947 m/s时,活性破片对后靶的穿孔开始显著大于前靶,主要是因为两靶间诱发了剧烈化学反应,且破片着速越高,反应越剧烈,后靶的毁伤增强效应越显著,当破片着速为947~1391 m/s时,后靶穿孔面积平均为4.1倍破片截面积,最大为7.2倍;该弹靶条件下活性破片冲击点火阈值速度约为947 m/s。  相似文献   

13.
The behind‐plate overpressure effect by a reactive material projectile with a density of 7.7 g cm−3 was investigated by ballistic impact and sealed chamber tests. The reactive projectile was launched onto the initially sealed test chamber with a 2024‐T3 aluminum cover plate with a thickness of 3 mm, 6 mm, and 10 mm, respectively. Moreover, the overpressure signals in the test chamber were recorded by a pressure sensor and a data acquisition system. The experimental results show that the behind‐plate overpressure effect is significantly influenced by plate thickness and impact velocity. For a given plate thickness, the peak overpressure in the test chamber shows an increasing trend with increase of impact velocity. However, for a given impact velocity, when impacting the 6 mm thick aluminum plate, the peak overpressure measured and the impulse delivered to chamber are higher than the values recorded for the 3 mm and 10 mm thick aluminum plates. As such, it is inferred that there is an optimum plate thickness to maximize the behind‐plate overpressure effect by reactive projectile.  相似文献   

14.
为安全处理和再利用废弃固体推进剂,通过添加单基药将丁羟推进剂再利用制备了灌注式凝胶炸药.采用验证板试验及电离探针法研究了不同装药配比、推进剂颗粒尺寸及装药直径对炸药爆轰性能的影响.结果表明,丁羟推进剂难以发生爆轰,若添加适量单基药,能显著提高炸药的爆轰感度,并降低其临界直径;该凝胶炸药密度为1.6 g/cm3,直径为7...  相似文献   

15.
115 mm shaped charges were fired at a constant built-in standoffs of 3 caliber against on both sides with steel plate covered glass targets from 0° to 60° NATO angles. The residual jet tip velocities and the disturbed jet regions have been analyzed from double flash X-ray pictures of the residual jet behind the target. Surprisingly under small angles the tip regions and under large angles the residual jet velocity regions have been more disturbed. This can be explained by the fact that under small angles the closure effect of glass is efficient but no more under large angles. But here the cover plates of the glass sandwich are effective as bulging armour. From the penetration time measurements, compared to the theoretical penetration potential, and together with the jet fan the jet velocities, which are no more perfectly penetrating can be defined. From this can be derived an induction time or how fast the armour will start to interfere with the passing jet.  相似文献   

16.
The theory of equivalent target was studied by considering the standoff curve and the penetration model of the horizontal velocity method to analyze the equivalent mechanism of spaced target equating ceramic composite armor. This theory can forecast the penetration ability of the escape jet. The equivalent target model can be obtained after the structure of the shaped charge and armor as well as the relationship between the armor and the shaped charge is confirmed. The experimental results confirmed the forecast accuracy of the theoretical model.  相似文献   

17.
Interaction of impact shock waves that could detonate an explosive (Composition B) confined in a thin-walled container impacted by a cylindrical projectile is numerically studied, based on the Forest Fire explosive reaction rate model. After the impact, rarefaction waves from projectile periphery and front cover–explosive interface catch up the forward-moving shock fronts in the explosive as well as in the projectile. At a high impact velocity, the transmitted shock front induces detonation at the front cover–explosive interface. At an intermediate velocity, the rate of energy release from the shock-compressed volume in the explosive is such that the associated effects prevail over the effects caused by rarefaction waves, leading to detonation after the shock wave travels a certain distance in the explosive. There is a range of minimum impact velocities at which the effect of rarefaction waves prevails over the energy release; hence, the detonation is excited not behind the shock-wave front moving over the explosive but only after shock-wave reflection from the high-impedance back plate. It is suggested that, in interpreting the detonation behavior of an explosive confined by a high-impedance container, one should take into account the effects of shock-wave interaction with container walls.  相似文献   

18.
王涛  王成习 《化工进展》2021,40(5):2416-2421
为测试锥形穿流塔板的性能,在内径为75mm的脉冲萃取塔中,以煤油-水和10%磷酸三丁酯/煤油-水为实验体系,在无传质条件下,研究脉冲强度与两相表观流速对分散相存留分数和特性速度的影响。结果表明,在实验范围内,存留分数与分散相流速近似成正比,与连续相流速无关。而随着脉冲强度的增大,存留分数先减小,当脉冲强度达到临界值(Af)t后,存留分数迅速增大。将此临界值与脉冲筛板塔临界值进行对比,两种体系分别减小约9.7%和41.4%,此外,特性速度随着脉冲强度的增大而减小,且界面张力较低的体系减小幅度更大。在实验结果分析的基础上,利用量纲分析方法得到了存留分数与特性速度的工程经验关联式,预测值与实验值符合较好,相对误差均小于20%,可以应用于脉冲萃取塔的设计计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号