首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 531 毫秒
1.
针对氧化亚硅(SiO)负极材料充放电过程中体积膨胀较大、容量衰减较快的问题,采用米粉作为碳源对SiO进行包覆改性。XRD测试结果表明,SiO和糯米粉包覆改性材料SiO-NM均没有显著的特征峰,为非晶体结构。SiO的首次放电比容量为1 980.6 mA·h/g,首次充电比容量为891.2 mA·h/g,首次充放电效率为45.0%;糯米粉包覆改性材料SiO-NM的首次放电比容量为942.9 mA·h/g,首次充电比容量为490.4 mA·h/g,首次充放电效率为52.0%,首次充放电效率显著提升。交流阻抗测试结果表明,SiO-NM的电荷转移阻抗Rct为213.7Ω,显著小于Si的465.4Ω,表明材料的导电性能得到提高。  相似文献   

2.
采用二次水热法将纳米二硫化钴负载于石墨烯上,并通过结构表征和电化学性能测试,探讨了纳米二硫化钴/石墨烯材料作为锂离子电池负极的性能。电容量测试结果表明:在电流密度为100 mA/g条件下,二硫化钴/石墨烯复合材料的首周充放电容量分别为1 610 mA·h/g和774 mA·h/g,测算出的库伦效率为48.1%;循环性能测试结果表明:经过50次循环测算后的复合材料的放电比容量为302 mA·h/g,容量保持率为33.4%;倍率性能测试结果表明:当电流密度回复到100 mA/g时,复合材料的比容量恢复至550 mA·h/g。实验制备的纳米二硫化钴/石墨烯复合材料在锂电池负极的应用上表现出了优异的循环性能和倍率性能。  相似文献   

3.
采用溶剂热合成法制备出镍掺杂的铁基金属有机骨架化合物(Fe-MOF),通过X射线衍射,扫描电子显微镜等对材料的形貌与结构进行了测试与表征,并测试了其作为锂电池负极材料的电化学性能。结果表明:材料为块状结构,颗粒大小分布为100~200nm。在电流密度为500mA/g的条件下,经过400次充放电工作循环后,容量稳定在511.8mA·h/g,相应的Coulomb效率为99.5%,显示出材料较高的比容量和优异的循环稳定性,是一种潜在的锂电池负极材料。  相似文献   

4.
以纳米TiO2和LiNO3为原料,尿素为燃料,燃烧法合成了锂离子电池负极材料Li4Ti5O12. 利用XRD、SEM和恒电流充放电、循环伏安和交流阻抗对其进行表征. 结果表明,预设炉温850℃,尿素与锂摩尔比1,焙烧8 h,制备得到平均粒径小于500 nm、粒度分布均匀的纯相尖晶石型结构Li4Ti5O12,并具有良好的电化学性能,具有1.5 V充放电平台,在0.1 C倍率下(1 C=170 mA·h/g),其首次充放电容量达到168 mA·h/g,经过100次循环后放电比容量仍有162 mA·h/g,容量保持率96.4%.  相似文献   

5.
以天然硅酸盐矿物还原制备硅负极材料,即可以继承天然矿物结构来提高硅材料的电化学性能,又具有低成本的特点。以天然埃洛石铝热还原的产物为原料,沥青为碳源,采用简单的蒸发溶剂的方法制备了硅碳复合材料。结果表明:硅是以直径为30 nm左右的纳米管形式存在,碳层均匀地包覆在硅纳米管上,使得硅碳复合材料的直径增大,碳层厚度约为7 nm,碳以无定形结构存在,碳包覆还导致比表面积下降。电化学测试表明,与硅纳米管相比,当包覆碳含量(质量分数)为15%时电化学性能最好,首次充放电容量分别为1 387.8 mA·h/g和1 615.7 mA·h/g,首次Coulombic效率达到85.9%。不但保持住了硅纳米管的首次充放电效率,循环性能得到大幅度提升,与硅纳米管的循环200次容量保持率38%相比,包覆碳含量为15%的循环200次容量保持率提高了45.8%。包覆碳含量为15%的硅/碳复合材料的500次循环后比容量为1 065.6 mA·h/g。容量保持率为76.8%。  相似文献   

6.
通过溶胶–凝胶法与热处理相结合的方法合成了锂离子电池核壳结构Si/SiO_x纳米复合负极材料,采用X射线衍射、扫描电镜、透射电镜、红外光谱分析了复合材料的结构,采用恒流充放电和电化学工作站测试材料的电化学性能。结果表明:纳米Si粒子表面被SiO_x包覆,形成了具有核壳结构的Si/SiO_x纳米复合材料。其中纳米Si粒子粒度为80~100nm,SiO_x厚度为15~19nm。合成Si/SiO_x纳米复合材料的首次放电容量达1093mA·h/g,经过100次循环后容量仍超过430mA·h/g,表现出良好的循环性能。  相似文献   

7.
以Na_2SnO_3·4H_2O为原料,CO(NH_2)_2为沉淀剂,采用水热法制备了SnO_2纳米球。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、比表面积测试仪(BET)及电化学测试仪测试材料的结构、形貌、比表面积及电化学性能。结果表明,所制备的纳米SnO_2材料具有规整的球体形貌,颗粒分散均匀,半径约为400nm,呈典型的金红石相结构。在电压为0.01~3V、电流密度200mA/g的条件下进行充放电测试,首次放电比容量为2206.6mA·h/g,50次循环后,放电比容量保持在440mA·h/g,具有较好的循环性能。  相似文献   

8.
以酚醛树脂为炭前驱体、水热法合成的Fe_3O_4纳米微球为核,经研磨、干燥、炭化制备Fe_3O_4@C纳米核壳型微球。结果表明,包覆后的Fe_3O_4@C微球尺寸均匀且无团聚现象。碳包覆量影响着Fe_3O_4@C锂电池负极材料的电化学性能。20%为最佳包覆量,其首次放电比容量为984 mA·h/g,100次循环后放电比容量保持在413 mA·h/g。  相似文献   

9.
采用静电纺丝法制备Si/PAN纳米纤维,并对其进行载荷冷冻干燥、热处理和炭化处理,制得锂离子电池负极用Si/C纳米纤维材料。通过XRD、SEM、TG-DSC和电化学性能测试分别对其结构、形貌、硅含量和电化学性能等进行分析测试。结果表明:Si/PAN纳米纤维的平均直径为200~500 nm,Si/C纳米纤维材料的平均直径为100~200 nm。当纳米硅粉含量为0.05 g时,在100 mA/g的条件下测试得到Si/C纳米纤维材料的首次放(充)电比容量为853 mA·h/g (541.5 mA·h/g),循环20次后比容量还能保持543.6 mA·h/g,循环保持率达99.78%,表现出较好的循环稳定性。  相似文献   

10.
二硫化锡(SnS_2)是一种受到广泛关注的高比容量和低成本的锂离子电池负极材料,但SnS_2在充放电过程中存在体积变化大,电导率低的问题。为了解决该问题,利用NaCl晶体为模板借助冷冻干燥的方法制备出纳米SnS_2片镶嵌氮掺杂多孔炭网络复合材料(SnS_2/N-CN)。材料中SnS_2纳米片的厚度为6~10 nm,均匀地镶嵌在多孔炭网络中。SnS_2/N-CN电极在0.1 A/g的电流密度下循环100次依旧保持813.7 mA·h/g的高可逆比容量,在3 A/g的电流密度下拥有436.7 mA·h/g的比容量,是一种极具应用前景的锂离子电池负极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号