首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 671 毫秒
1.
本文研究了蒸汽养护条件下,甲酸钙/纳米C-S-H(NC)复合对粉煤灰-水泥体系早期抗压强度的影响,并结合XRD、DSC-TG、MIP、SEM及FTIR等手段分析了其影响机理。结果表明:蒸汽养护条件下掺入甲酸钙能显著提高粉煤灰-水泥体系的早期抗压强度,且掺量为1.5%(质量分数)时效果最佳;甲酸钙能促进水泥和粉煤灰水化,提高水化产物的生成速率,降低粉煤灰-水泥体系的孔隙率和总孔容;在掺入甲酸钙的基础上掺入NC可进一步提高体系抗压强度,且随着NC掺量的增加而提高;NC能促进水化产物生成,提升水化程度,细化孔结构,提高体系致密度。  相似文献   

2.
微观表征法研究煤矸石改性水泥砂浆水化机理   总被引:1,自引:1,他引:0       下载免费PDF全文
在水泥胶砂中掺入适当配比的煤矸石可以增加水泥砂浆的强度,尤其是早期强度.与不添加煤矸石的基准砂浆相比,煤矸石的掺量为9%时,砂浆3 d抗压强度提高1.0 MPa,28 d抗压强度提高2.0 MPa.XRD、TGA-DTA和SEM分析证实:加入煤矸石促进了水泥砂浆7 d早期水化反应,生成水化产物钙矾石、C-S-H凝胶、AFm和氢氧化钙,且水化产物的数量亦不同,各产物的晶型结构也不相同,改性后水化产物增多,水化速率加快,因而影响砂浆的宏观力学强度.  相似文献   

3.
针对油页岩灰渣活性偏低的弊病,采用物理机械和化学方法对油页岩灰渣进行活化处理。探讨了颗粒细度、化学激发剂种类及掺量对水泥砂浆力学性能的影响,并通过XRD、SEM研究了水化产物矿物组成和微观形貌。结果表明:通过物理机械和化学复合活化后,油页岩灰渣替代20%水泥制备的砂浆早期抗折强度提高30%,抗压强度提高31%,后期抗压强度提高17%。复合激发加快了水泥砂浆的水化速度,减少了水化产物中Ca(OH)2的含量。  相似文献   

4.
通过水泥胶砂强度和水化热试验对不同替代水泥量的防腐阻锈成分、粉煤灰、矿渣粉三种活性掺合料进行了SEM、XRD衍射分析,观察其水化形貌及特性。试验结果表明:单掺防腐阻锈剂、双掺矿物掺合料都有利于提高水泥胶砂的抗压强度、降低水泥水化速率,但后者因早期水化慢会降低砂浆早期强度;三者复合后,进一步降低了水泥早期水化放热速率,避免了胶凝材料水化的集中放热,使胶砂56 d抗压强度高于基准组8 MPa。通过SEM水化产物结构形貌分析和XRD衍射图谱可知:防腐阻锈成分的掺入对矿物掺合料实现了碱改性,促进了矿物掺合料的二次水化,提高了砂浆或混凝土的强度及耐久性。  相似文献   

5.
本文研究了协同掺加铝酸三钙(C3A)和碳酸钙(CaCO3)对硅酸盐水泥早期水化及硬化性能的影响。用X射线衍射(XRD)、热重分析(TG)、扫描电子显微镜(SEM)等技术分析水化产物及显微结构。结果表明,协同掺加C3A和CaCO3会显著提高硅酸盐水泥的早期力学强度。当硅酸盐水泥中掺加15%(质量分数,下同)的C3A,并对应掺加5.6%的CaCO3时,其3 d、7 d、14 d抗压强度较参比样分别提高了28.8%、55.7%、26.8%。微观分析指出,协同掺加C3A和CaCO3,促进了水泥水化早期碳铝酸钙的生成,是提高水泥砂浆早期强度的主要原因。  相似文献   

6.
通过水化程度测试、抗压强度测试、XRD及SEM分析,研究了养护温度对贝利特-硫铝酸钡钙水泥水化程度、力学性能和水化产物的组成及其结构的影响,并将实验结果与普通硅酸盐水泥的相关性能进行比较.结果表明:养护温度对贝利特-硫铝酸钡钙水泥的早期水化影响较大,适当提高养护温度对贝利特-硫铝酸钡钙水泥的早期水化具有显著的促进作用,而对后期水化影响较小.养护温度从5 ℃提高到35 ℃时,该水泥3 d水化程度由31.57%提高到62.56%,水化3 d抗压强度由28.1 MPa增强到52.7 MPa.与普通硅酸盐水泥相比,贝利特-硫铝酸钡钙水泥早期抗压强度受养护温度的影响更大.  相似文献   

7.
为探明二元固废间的协同胶凝作用,本文研究了不同配合比条件下钢渣-赤泥-水泥基复合砂浆的力学性能,并采用水化热、XRD、TG-DTG、SEM等手段来表征复合砂浆的水化特征及微观形貌。研究结果表明:与纯水泥组相比,单掺30%(以下均为质量分数)钢渣会抑制浆体的水化反应,从而降低砂浆的力学性能,而在单掺30%钢渣的基础上复掺适量的赤泥可以有效降低钢渣对砂浆力学性能的负面影响。其中,当钢渣掺量为15%、赤泥掺量为15%时,复合砂浆的28 d抗折强度和28 d抗压强度均最高,分别为6.8和39.8 MPa,与单掺30%钢渣组相比,复合砂浆的28 d抗折强度和28 d抗压强度分别提高了11.5%和20.6%,这主要是因为掺入的赤泥不仅起到物理填充作用,而且为钢渣的水化反应提供了良好的碱性环境,促进钢渣参与水化反应,生成更多的钙矾石和水化硅酸钙凝胶,改善砂浆的微观结构。  相似文献   

8.
黄展魏  陈伟  李秋  王蒙  范剑锋 《硅酸盐通报》2017,36(8):2530-2535
通过对水泥砂浆中掺加水性环氧树脂,制备了水性环氧树脂改性水泥砂浆,研究了不同聚灰比下,水性环氧树脂对水泥砂浆水化和强度的影响.运用XRD、TG/DSC、SEM、FTIR微观测试手段,研究了水性环氧树脂对水泥砂浆水化产物的影响.研究结果表明:水性环氧树脂可形成聚合物膜会延迟水泥水化;水性环氧树脂的加入会降低水泥砂浆的抗压强度;当聚灰比在2%范围以内,水性环氧树脂可以提高水泥砂浆的抗折强度.  相似文献   

9.
矿渣对阿利特-硫铝酸钡钙水泥水化硬化过程的影响   总被引:1,自引:0,他引:1  
通过对水泥力学性能、水化速率和水泥硬化浆体孔结构的测定,结合XRD、SEM分析,研究了矿渣对阿利特-硫铝酸钡钙水泥水化硬化过程的影响。研究结果表明:掺入矿渣后,水泥的早期强度下降幅度较大,但后期强度下降幅度较小。在试验掺量范围内,当矿渣掺量为20%时,该水泥各龄期抗压强度下降幅度最小,其后期抗压强度接近纯熟料水泥;加入矿渣后,水泥水化热明显降低,矿渣在受到碱激发与硫铝酸盐双重激发作用下发生二次水化反应,使水泥水化速率有一定增加而出现第三个放热峰;矿渣二次水化反应有效地改善了硬化水泥浆体的孔结构,使水泥后期强度逐渐增加。  相似文献   

10.
韩莹  赵文杰 《硅酸盐通报》2014,33(11):2924-2929
通过半连续乳液接枝聚合反应合成了m(聚丁二烯)/m(苯乙烯)/m(甲基丙烯酸环氧丙酯)比例为50/46/4的聚丁二烯接枝苯乙烯(St)和甲基丙烯酸环氧丙酯(GMA)共聚胶乳(PB-g-PSG).水灰比为0.4(质量比)时,将硅灰和胶乳用于改性水泥砂浆,研究了硅灰掺量和胶乳掺量对改性水泥砂浆的流动度、抗压和抗折强度以及水吸收速率的影响.研究表明:在一定掺量范围内,当胶乳掺量增加时,改性砂浆的流动度增加,吸水率降低;当硅灰掺量增加时,流动度降低,合适的硅灰掺量能降低改性砂浆的吸水率;胶乳和硅灰的复合掺入有益于砂浆力学性能的改善,改性砂浆的抗压强度、抗折强度最高值分别为67.02 MPa和7.40 MPa;利用DSC和XRD研究了硅灰和胶乳对水泥水化的影响,结果表明:当胶乳掺量增加时,水泥水化程度呈先增后降趋势,胶乳掺入10%时,水泥水化程度最高.当硅灰掺量增加时,水泥水化程度呈下降趋势,硅灰掺量为5%时,水泥水化程度最高.综上,胶乳和硅灰可以复合改性水泥砂浆.  相似文献   

11.
本文研究了不同拌和水以及海水拌和时粉煤灰和硅灰掺量对硫铝酸盐水泥(SAC)砂浆力学性能和表观孔隙率以及净浆凝结时间、化学收缩、孔溶液pH值和氯离子结合能力等的影响,并通过XRD、SEM和EDS分析水泥水化产物和微观结构。结果表明,海水能加快SAC早期水化并提高其早期强度,但后期强度和淡水拌和时无明显差别。粉煤灰和硅灰均会延长SAC凝结时间,对早期抗压强度不利,而掺加质量分数为5.0%和7.5%的硅灰能提高SAC砂浆28 d抗压强度。硅灰掺量增加时会提高用水量和表观孔隙率,降低流动性,使水泥化学收缩增大,降低净浆pH值且减少氯离子结合量;粉煤灰能够提高砂浆流动性,减少水泥化学收缩,但掺量越大对SAC砂浆抗压强度和抗折强度越不利,掺质量分数为10%的粉煤灰可小幅提高氯离子结合量且减小表观孔隙率。  相似文献   

12.
针对水泥路面表面损伤修补材料应当具有良好的适应性、界面粘结强度高和较强耐久性等特点,对砂浆类修补材料进行复合改性,研发出一种新型有机-无机类复合修补材料--CAE复合胶浆.对不同龄期的CAE砂浆进行抗折、抗压试验以及冲击韧性试验并采用XRD、红外光谱和SEM等微观测试方法研究其硬化机理.研究结果表明,环氧乳液掺量为30%时,CAE复合胶浆抗折强度与普通砂浆差别不大,抗压强度较普通砂浆低,但冲击韧性显著提高.加入乳化沥青和环氧乳液能够延缓水泥水化但不能阻碍水化进程,环氧乳液能够在CAE复合胶浆中完全固化,乳化沥青和环氧乳液固化形成的网络结构与水泥水化产物相互交织穿插,有效改善了CAE复合胶浆材料的孔隙结构.  相似文献   

13.
研究了聚羧酸系高效减水剂(PCE)和萘系减水剂(FDN)对硫铝酸盐水泥净浆工作性能及力学性能影响,通过XRD和SEM检测手段对水化产物进行表征.结果表明:两种减水剂对硫铝酸盐水泥净浆流动度的影响存在饱和点;相比于FDN型减水剂,PCE型减水剂对硫铝酸盐水泥净浆具有更好的减水效率及分散能力.PCE型减水剂阻碍硫铝酸盐水泥净浆早期水化,并降低硫铝酸盐水泥净浆1 d抗压强度;FDN型减水剂能够加速硫铝酸盐水泥净浆早期水化,缩短初凝和终凝时间,提高硫铝酸盐水泥净浆1d抗压强度.两种减水剂对硫铝酸盐水泥净浆3d后抗压强度及水化产物种类均没有影响.  相似文献   

14.
碱性电解水具有强碱性、高活性、离子性和吸附性等优点,本文利用不同pH值(9.5、10.5、11.5)的碱性电解水制备粉煤灰砂浆,并在粉煤灰取代率为0%、15%及30%(质量分数)的条件下,系统研究了不同pH值碱性电解水对粉煤灰砂浆的工作性能、力学性能以及Ca(OH)2等水泥水化产物含量的影响规律,并利用XRD、SEM等微观试验对比分析了不同pH值的粉煤灰净浆的结构组成和微观形貌特征。试验结果表明:随着pH值的提高,相较于普通自来水粉煤灰砂浆,碱性电解水粉煤灰砂浆的流动度、抗压强度和抗折强度逐渐提高,水化产物Ca(OH)2含量逐渐降低。当碱性电解水pH值为10.5,粉煤灰取代率为15%时,碱性电解水粉煤灰砂浆的早期强度和流动度的改善效果达到最佳,28 d的抗压强度和抗折强度较普通水砂浆分别提高了8.4%和12.5%。同时,相较于普通自来水净浆,不同pH值的碱性电解水净浆的团簇化和颗粒化均表现得更加明显,这对于促进水泥水化进程,提高砂浆流动性,激发粉煤灰早期活性起到了积极作用,除了生成更多的C-S-H凝胶体和Ca(OH)2等水化产物以外,还生成了钾长石等其他水化产物。  相似文献   

15.
苏美娟  王子明  赵攀  刘晓 《硅酸盐通报》2022,41(12):4172-4179
碱性和无碱速凝剂掺入水泥后的水化机理不同,导致应用性能存在明显差异。本文通过测试凝结时间和砂浆抗压强度等宏观性能对比了两种速凝剂的应用性能,并通过水化放热分析、XRD定量分析、热重分析和SEM微观形貌观察等微观方法综合分析了两者的早期水化历程。结果表明:碱性速凝剂加入水泥后,[Al(OH)4]-加快了水泥中石膏的消耗速度,水化初期生成大量钙矾石(AFt),促进了硅酸三钙(C3S)矿物的水化,缩短了水泥浆体的凝结时间并提高了砂浆的早期抗压强度,但石膏的加速消耗也使得单硫型水化硫铝酸钙(AFm)和水化铝酸钙(C-A-H)等水化产物提前生成,影响了水泥基材料的后期抗压强度发展;无碱速凝剂加入水泥后,[Al(OH)4]-和SO2-4在液相中生成了大量AFt,促进了铝酸三钙(C3A)和C3S矿物的水化,影响了氢氧化钙(CH)的结晶析出。值得注意的是,SO2-4不仅促进了C3A生成AFt的过程,也延缓了水泥中石膏的消耗及AFm和C-A-H等产物的生成,因此无碱速凝剂的加入除了明显提高早期抗压强度外,后期28 d抗压强度也不受影响。  相似文献   

16.
伍勇华  张鹏  程浩  陈畅  杨浩  杨颖刚 《硅酸盐通报》2017,36(7):2275-2279
合成了阴离子型和两性型聚羧酸减水剂,研究了两类聚羧酸减水剂对水泥水化热、蒸养胶砂和蒸养混凝土强度的影响.结果表明:在蒸养条件下,与阴离子型聚羧酸减水剂相比,掺两性型聚羧酸减水剂的水泥水化温峰更高;在相同水灰比时,掺两性聚羧酸减水剂的蒸养胶砂和蒸养混凝土的强度也更高.XRD分析可知,掺入两性聚羧酸减水剂在蒸养条件下生成更多的AFm和氢氧化钙,促进了C3S和C2S的水化.  相似文献   

17.
谢晓杰  王申 《硅酸盐通报》2021,40(6):1911-1917
本文研究了纳米氧化铝(NA)对硅酸盐水泥浆体的早期流变性、中期水化特性和后期力学性能的影响,并且分析了三个阶段之间参数的相关性。结果表明,NA的掺入增大了新拌水泥浆体的屈服应力和塑性黏度,且当NA掺量范围为3%~5%时,屈服应力和塑性黏度最大增幅均超过110%。在水泥浆体中掺入NA明显改变了硅酸盐水泥早期的水化放热速率和放热量,并且使得浆体在各龄期的抗压强度和抗折强度有所增长。对于该复合胶凝体系,早期的水化放热量与流变参数呈指数增长的变化趋势,而放热峰值速率与抗压强度则存在近似线性的函数关系。  相似文献   

18.
张涛  朱成 《硅酸盐通报》2022,41(3):903-912
为研究硅灰及粉煤灰对不同养护龄期的水泥浆体强度及收缩性能的影响,以水胶比为0.29的水泥浆体为基体,设计制备了五种硅灰及粉煤灰掺量的复合水泥浆体,借助量热仪和压汞仪测试表征了不同复合水泥浆体的水化放热特性以及孔结构组成,分析了水化放热量、孔隙率等参数随硅灰和粉煤灰掺量增加的变化规律,建立了复合浆体抗压强度与孔结构以及水化特性与收缩应变之间的量化关系。结果表明,掺入粉煤灰会大幅降低水泥净浆早期抗压强度,但对减小自收缩应变和干缩应变极为有利。掺入硅灰能明显提高净浆3 d抗压强度,但当硅灰掺量超过10%(质量分数)后,净浆3 d自收缩应变及28 d干缩应变增加极为明显。掺入硅灰会使水泥水化诱导期开始和结束的时间提前,还会增加水化反应级数和各阶段的反应速率常数值,导致水泥-硅灰复合浆体的水化放热总量和放热速率相较于水泥-粉煤灰体系大幅增加。粉煤灰和硅灰的掺入均能有效细化水泥浆体内部孔结构,提高凝胶孔比例,大幅降低大孔比例。复合浆体的72 h水化放热总量和3 d自收缩应变呈现正相关关系,而孔隙率和抗压强度呈现明显的负相关关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号