首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用甲基丙烯酸甲酯、丙烯酸丁酯、二乙烯基苯、丙烯酸、反应型乳化剂马来酸酐十二醇单酯钾盐和助乳化剂正戊醇制备得到无皂微乳液。通过正交实验优化出了反应型乳化剂的最佳合成条件:n(马来酸酐):n(十二醇)=1.15:1,反应温度80℃,反应时间3 h,制备出反应型乳化剂———马来酸酐十二醇单酯钾盐,代替外乳化剂十二烷基硫酸钠,进行无皂微乳液聚合制备具有增强作用的加脂型复鞣剂。将制得的加脂型复鞣剂用于猪二层革的复鞣实验,结果表明,反应型乳化剂与混合单体(丙烯酸丁酯、甲基丙烯酸甲酯和二乙烯基苯)的质量分别为120 g和180 g,活性单体丙烯酸质量为10 g时对皮革的复鞣效果最好。成革的物理机械性能得到了提高,其横向撕裂强度提高58.8%,纵向撕裂强度提高37.4%,崩破强度提高54.1%。  相似文献   

2.
反应型乳化剂在微乳液皮革柔软增强剂制备中的应用探索   总被引:1,自引:0,他引:1  
在前期微乳皮革增强复鞣剂研究的基础上,优化出了反应型乳化剂的最佳合成条件,制备出反应型乳化剂——马来酸酐十二醇单酯钾盐,代替外乳化剂十二烷基硫酸钠,进行无皂微乳液聚合制备皮革柔软增强剂(EM)。将制得的EM用于猪二层革的增强处理。结果表明:反应型乳化剂与混合单体(丙烯酸丁酯90g、甲基丙烯酸甲酯75g和二乙烯基苯15g)的质量分别为120g和180g。活性单体丙烯酸质量为10g时对皮革的柔软增强效果最好。横向撕裂强度提高58.8%,纵向提高37.4%,成革的横向和纵向的撕裂强度趋于一致,崩破强度提高54.1%。  相似文献   

3.
将添加十二烷基聚氧乙烯醚马来酸酐单酯钠盐制得的微乳液柔软增强剂用于猪二层革的增强实验中,将应用实验结果反馈到合成实验中.最终确定w(十二烷基聚氧乙烯醚马来酸酐单酯钠盐)=10%、混合单体质量分数为18%[m(甲基丙烯酸丁酯):m(甲基丙烯酸甲酯):m(丙烯酸丁酯)=4:7:7],固含量(质量分数)为33%时的微乳液聚合物的应用性能较佳.当其用量(相对于皮革质量)为6%,皮革的物理机械性能明显提高:撕裂强度横向提高22.2%,纵向提高61.2%,抗张强度横向提高20.5%,纵向提高46.4%,柔软度提高1.7%.纳米激光粒度仪检测微乳液聚合物的平均粒径为30 nm.  相似文献   

4.
聚丙烯酸酯的乳液聚合及其吸油性能研究   总被引:1,自引:0,他引:1  
以丙烯酸十二酯、丙烯酸丁酯等为原料,采用乳液聚合法合成了聚丙烯酸酯树脂。讨论了乳化剂、搅拌速度、反应温度对聚丙烯酸酯乳液性能的影响,考察了单体配比、引发剂用量、交联剂种类及用量、致孔剂用量等对聚丙烯酸酯树脂吸油性能的影响。发现当反应单体丙烯酸丁酯与丙烯酸十二酯的摩尔比为3∶1,交联剂二乙烯基苯用量为单体质量的2%,引发剂过硫酸铵用量为单体质量的2%,致孔剂乙酸乙酯用量为单体质量的50%时,合成的聚丙烯酸酯树脂对煤油、甲苯和CCl4的吸收率分别为7.12、18.10和33.39g·g-1,表现出良好的吸油性能。  相似文献   

5.
外交联型多元共聚物乳液的研制   总被引:1,自引:0,他引:1  
甲基丙烯酸甲酯、丙烯酸丁酯、丙烯酸2-乙基己酯、丙烯酸和甲基丙烯酸β-羟乙酯等单体经乳液共聚制得外交联型多元共聚物乳液,讨论了乳化剂配比及用量,引发剂用量,功能单体用量,软硬单体的配比对乳液聚合反应及涂膜性能的影响,确定了适宜的反应条件及配方。  相似文献   

6.
介绍了以丙烯酸、丙烯酸十二酯、甲基丙烯酸甲酯和丙烯酸丁酯为单体,采用反应型乳化剂,经过乳液聚合,制得了一种水性涂料用缔合型增稠剂。考察了丙烯酸和丙烯酸十二酯单体含量、乳化剂用量对增稠剂增稠性能和黏度的影响。  相似文献   

7.
采用核壳乳液聚合方法,以反应型乳化剂壬基酚聚氧乙烯醚硫酸铵DNS-458、甲基丙烯酸甲酯和丙烯酸丁酯为聚合单体,甲基丙烯酸十二氟庚酯和乙烯基三甲氧基硅烷为功能单体,制备了有机氟、硅改性聚丙烯酸酯无皂乳液织物整理剂,并研究了乳化剂用量、功能单体用量对合成反应的影响。结果表明:有机氟、硅聚丙烯酸酯乳液最佳制备条件为DNS-458用量(占总单体质量。下同)3.00%,有机氟用量12.00%,有机硅用量2.00%,在反应温度80 ℃时,得到的无皂乳液粒径在54.7 nm处分布最多,分布均匀。采用有机氟、硅改性聚丙烯酸酯无皂乳液整理的亚麻织物的水接触角较亚麻原布明显提高,可达134.120°,亚麻织物的弯曲刚性由5.3 cN/mm降至4.4 cN/mm,断裂强力由581 N增加到824 N,白度略有下降。  相似文献   

8.
丙烯酸酯无皂乳液的研制   总被引:1,自引:0,他引:1  
以过硫酸铵(APS)为引发剂,甲基丙烯酸甲酯(MMA)为硬单体,丙烯酸丁酯(BA)为软单体,丙烯酸(AA)为功能单体,阴-非复合表面活性剂(WE-9)为乳化剂,采用预乳化法合成了一种聚丙烯酸酯无皂乳液。讨论了引发剂和乳化剂用量对乳液性能的影响。结果表明:当w(WE-9)=0.6%,w(APS)=0.5%,该无皂乳液具有优良的综合性能。  相似文献   

9.
环氧-丙烯酸酯乳液的研制   总被引:9,自引:0,他引:9  
杨瑞芹  崔天放  陈尔凡  江伟 《化学世界》2002,43(1):22-24,15
以甲基丙烯酸甲酯为硬单体 ,丙烯酸丁酯、丙烯酸 - 2 -乙基己酯为软单体 ,丙烯酸、甲基丙烯酸β-羟乙酯为功能单体 ,环氧树脂为改性剂 ,通过乳液共聚合制备环氧 -丙烯酸酯乳液。讨论了乳化剂配比、用量 ,引发剂用量 ,反应温度 ,环氧树脂用量、环氧树脂的环氧值 ,以及软硬单体的配比对乳液聚合反应及涂膜性能的影响 ,确定了适宜的反应条件及较佳的配方。  相似文献   

10.
丙烯酸树脂纳米乳液的制备及对皮革的增强作用   总被引:5,自引:0,他引:5  
用半连续加料法,制备了固体成分质量分数为25%的聚丙烯酸树脂纳米乳液(胶乳粒径平均约20nm),并将其用于皮革复鞣。用激光粒度仪和红外光谱仪分别对胶粒粒径和聚合物组成进行了表征,并用多功能材料实验机对皮革强度进行了测量。结果表明:当乳化剂w〔十二烷基硫酸钠(SDS)〕=4%,助乳化剂w〔正戊醇(NP)〕=0.75%,引发剂w〔过硫酸铵(ASP)〕=0.2%,w〔丙烯酸(AA)〕=0.4%~0.8%时,w(固体组分)=25%的纳米乳液的胶粒粒径最小(平均19.8nm)。用w〔二乙烯基苯(DVB)〕=1.2%作为交联剂,w〔丙烯酸(AA)〕=0.8%作为功能性单体所制备的丙烯酸纳米乳液,对皮革的增强效果最好。用皮革质量2%的丙烯酸纳米乳液复鞣猪二层革,能使革的抗张强度提高68%,撕裂强度提高44%。  相似文献   

11.
12.
It is well established that a wide range of drugs of abuse acutely boost the signaling of the sympathetic nervous system and the hypothalamic–pituitary–adrenal (HPA) axis, where norepinephrine and epinephrine are major output molecules. This stimulatory effect is accompanied by such symptoms as elevated heart rate and blood pressure, more rapid breathing, increased body temperature and sweating, and pupillary dilation, as well as the intoxicating or euphoric subjective properties of the drug. While many drugs of abuse are thought to achieve their intoxicating effects by modulating the monoaminergic neurotransmitter systems (i.e., serotonin, norepinephrine, dopamine) by binding to these receptors or otherwise affecting their synaptic signaling, this paper puts forth the hypothesis that many of these drugs are actually acutely converted to catecholamines (dopamine, norepinephrine, epinephrine) in vivo, in addition to transformation to their known metabolites. In this manner, a range of stimulants, opioids, and psychedelics (as well as alcohol) may partially achieve their intoxicating properties, as well as side effects, due to this putative transformation to catecholamines. If this hypothesis is correct, it would alter our understanding of the basic biosynthetic pathways for generating these important signaling molecules, while also modifying our view of the neural substrates underlying substance abuse and dependence, including psychological stress-induced relapse. Importantly, there is a direct way to test the overarching hypothesis: administer (either centrally or peripherally) stable isotope versions of these drugs to model organisms such as rodents (or even to humans) and then use liquid chromatography-mass spectrometry to determine if the labeled drug is converted to labeled catecholamines in brain, blood plasma, or urine samples.  相似文献   

13.
14.
Scentless plant bugs (Heteroptera: Rhopalidae) are so named because adults of the Serinethinae have vestigial metathoracic scent glands. Serinethines are seed predators of Sapindales, especially Sapindaceae that produce toxic cyanolipids. In two serinethine species whose ranges extend into the southern United States,Jadera haematoloma andJ. sanguinolenta, sequestration of host cyanolipids as glucosides renders these gregarious, aposematic insects unpalatable to a variety of predators. The blood glucoside profile and cyanogenesis ofJadera varies depending on the cyanolipid chemistry of hosts, and adults and larvae fed golden rain tree seeds (Koelreuteria paniculata) excrete the volatile lactone, 4-methyl-2(5H)-furanone, to which they are attracted.Jadera fed balloon vine seeds (Cardiospermum spp.) do not excrete the attractive lactone. Loss of the usual heteropteran defensive glands in serinethines may have coevolved with host specificity on toxic plants, and the orientation ofJadera to a volatile excretory product could be an adaptive response to save time.Mention of a commercial product does not consititute an endorsement by the USDA.  相似文献   

15.
16.
Vismiones and ferruginins, representatives of a new class of lypophilic anthranoids from the genusVismia were found to inhibit feeding in larvae of species ofSpodoptera, Heliothis, and inLocusta migratoria.  相似文献   

17.
Despite its industrial importance, the subject of freeze-thaw (F/T) stability of latex coatings has not been studied extensively. There is also a lack of fundamental understanding about the process and the mechanisms through which a coating becomes destabilized. High pressure (2100 bar) freezing fixes the state of water-suspended particles of polymer binder and inorganic pigments without the growth of ice crystals during freezing that produce artifacts in direct imaging scanning electron microscopy (SEM) of fracture surfaces of frozen coatings. We show that by incorporating copolymerizable functional monomers, it is possible to achieve F/T stability in polymer latexes and in low-VOC paints, as judged by the microstructures revealed by the cryogenic SEM technique. Particle coalescence as well as pigment segregation in F/T unstable systems are visualized. In order to achieve F/T stability in paints, latex particles must not flocculate and should provide protection to inorganic pigment and extender particles. Because of the unique capabilities of the cryogenic SEM, we are able to separate the effects of freezing and thawing, and study the influence of the rate of freezing and thawing on F/T stability. Destabilization can be caused by either freezing or thawing. A slow freezing process is more detrimental to F/T stability than a fast freezing process; the latter actually preserves suspension stability during freezing. Presented at the 82nd Annual Meeting of the Federation of Societies for Coatings Technology, October 27–29, 2004 in Chicago, IL. Tied for first place in The John A. Gordon Best Paper Competition.  相似文献   

18.
2008~2009年世界塑料工业进展   总被引:4,自引:1,他引:3  
收集了2008年7月~2009年6月世界塑料工业的相关资料,介绍了2008~2009年国外塑料工业的发展情况,提供了世界塑料产量、消费量及全球各类树脂的需求量及产能情况。按通用热塑性树脂(聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、ABS树脂)、工程塑料(尼龙、聚碳酸酯、聚甲醛、热塑性聚酯、聚苯醚)、特种工程塑料(聚苯硫醚、液晶聚合物、聚醚醚酮)、通用热固性树脂(酚醛、聚氨酯、环氧树脂、不饱和聚酯树脂)不同品种的顺序,对树脂的产量、消费量、供需状况及合成工艺、产品应用开发、树脂品种的延伸及应用的进一步扩展等技术作了详细介绍。  相似文献   

19.
In 2002–2004, we examined the flight responses of 49 species of native and exotic bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae) to traps baited with ethanol and/or (−)-α-pinene in the southeastern US. Eight field trials were conducted in mature pine stands in Alabama, Florida, Georgia, North Carolina, and South Carolina. Funnel traps baited with ethanol lures (release rate, about 0.6 g/day at 25–28°C) were attractive to ten species of ambrosia beetles (Ambrosiodmus tachygraphus, Anisandrus sayi, Dryoxylon onoharaensum, Monarthrum mali, Xyleborinus saxesenii, Xyleborus affinis, Xyleborus ferrugineus, Xylosandrus compactus, Xylosandrus crassiusculus, and Xylosandrus germanus) and two species of bark beetles (Cryptocarenus heveae and Hypothenemus sp.). Traps baited with (−)-α-pinene lures (release rate, 2–6 g/day at 25–28°C) were attractive to five bark beetle species (Dendroctonus terebrans, Hylastes porculus, Hylastes salebrosus, Hylastes tenuis, and Ips grandicollis) and one platypodid ambrosia beetle species (Myoplatypus flavicornis). Ethanol enhanced responses of some species (Xyleborus pubescens, H. porculus, H. salebrosus, H. tenuis, and Pityophthorus cariniceps) to traps baited with (−)-α-pinene in some locations. (−)-α-Pinene interrupted the response of some ambrosia beetle species to traps baited with ethanol, but only the response of D. onoharaensum was interrupted consistently at most locations. Of 23 species of ambrosia beetles captured in our field trials, nine were exotic and accounted for 70–97% of total catches of ambrosia beetles. Our results provide support for the continued use of separate traps baited with ethanol alone and ethanol with (−)-α-pinene to detect and monitor common bark and ambrosia beetles from the southeastern region of the US.  相似文献   

20.
建立了测定地球化学样品中包括As、Cr、Ge、V等18种微量、痕量元素的ICP-MS方法。地化试样用HF-HNO3混酸分解后,以1 1 HNO3溶解干渣。由于制样不使用盐酸,避免了Cl对As、Cr、Ge、V的质谱干扰。用国家一级地球化学标准物质GBW 07309制备溶液优化仪器工作参数,并用于校准。方法测定限(6s)为:0.007~6.4μg/g,精密度(RSD%,n=12)为:29%~9.4%,经过国家一级地球化学标准物质的分析验证,结果与标准值吻合。方法已应用于国土资源调查的试样分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号