首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
开展模型试验研究海洋黏性土中裙式吸力基础沉贯和注水上拔特性,并研究了土体强度、基础尺寸和安装方式等影响因素。研究表明:主桶长径比为1.0和2.0的裙式吸力基础最终沉贯深度较相同高度传统吸力基础仅降低2%和6%,证实了裙式吸力基础在黏性土中具有良好沉贯性。主桶和裙结构在吸力沉贯时对土体造成扰动,导致吸力沉贯阻力小于压力贯入时的阻力。基于极限平衡方法,提出了裙式吸力基础在黏性土中的沉贯阻力与所需吸力的计算公式,并验证其准确性。得到传统和裙式吸力基础在注水拔出过程中基础内部水压力、上拔阻力与基础上拔位移之间的关系,发现基础内部水压力随上拔位移先迅速增加至最大值,然后逐渐降低,裙式吸力基础最终上拔位移小于相同基础高度的传统吸力基础。得到了裙式吸力基础注水拔出阻力计算公式。  相似文献   

2.
针对吸力式基础(吸力桶)负压沉贯中的桶体倾斜,自行研制了专门的试验平台,并开展了一系列物理模型试验,模拟了水平与倾斜的地基初始状态下单个吸力桶贯入过程,探究了在地基倾斜状态下桶体贯入发生倾斜时的贯入机制。试验结果表明,吸力桶贯入深度演变曲线与贯入负压有关,其表示为三个规律性阶段:线性增加阶段、缓慢收敛阶段以及极限阶段。倾斜状态下贯入部位附近孔隙水压力的变化可反映基础的倾斜状态和倾斜程度。同时,负压的增大对桶基础倾斜有一定抑制作用。  相似文献   

3.
桶形基础抗拔力试验研究   总被引:3,自引:0,他引:3  
简要介绍了桶形基础在抗拔承载力方面的研究现状 ,根据桶形基础应用地区的滩海地质情况制备模型试验地基基础。为了了解桶形基础在这一地区的抗拔承载力情况 ,对不同桶深的桶形基础进行抗拔承载力试验 ,分析桶形基础抗拔承载力的作用机理 ,同时 ,考虑了负压对抗拔承载力的影响 ,为桶形基础在这一地区的使用提供了一定的参考  相似文献   

4.
埋入式吸力锚是利用桶形基础进行贯入海床的一种锚泊基础,其抗拔承载力主要由桶壁与土体的摩擦及兜住海床土体的自重产生,传统埋入式吸力锚沿锚链方向能兜住的海床土体的面积较小,故其承载力相对较小。提出一种吸力贯入旋转式锚泊基础,通过张拉锚链使左半壳体与右半壳体发生相对旋转,能兜住较大面积的海床土体,从而具有较大的抗拔承载力。  相似文献   

5.
黏土地基中桶形基础在抗拔承载特性方面,由于桶裙内土体(土塞)的受力状态,使得它与其它海洋基础形式有明显的区别。桶形基础可能产生局部剪切破坏、底部张力破坏以及反向承载力破坏三种不同的抗拔失效形式,其中确定反向承载力破坏时的极限承载能力最为关键。通过有限元分析,研究桶形基础反向承载力破坏的机理,及组成抗拔承载力各部分抗力的变化情况,并利用计算结果与理论公式进行对比,提出适宜的抗拔承载力计算公式,为桶形基础抗拔承载力的设计提供依据和有益参考。  相似文献   

6.
中粗砂中吸力锚的负压沉贯模型试验研究   总被引:2,自引:0,他引:2  
吸力锚是海洋工程中广泛采用的一种基础形式。其沉贯能力(即达到预定海床位置)是其承载力达到设计要求的重要保证。国内外针对吸力锚在细砂、粉土和黏土中的沉贯性进行了较多理论及模型试验研究,但对中粗砂研究相对较少。分别针对不同水位深度和不同抽吸速度条件,对吸力锚在中粗砂中的沉贯性进行了大量模型试验研究和分析,得到了负压与沉贯深度的关系。通过沉贯方案对比,得出了吸力锚负压沉贯的最佳试验条件。通过有机玻璃吸力锚对比沉贯试验,直观展示了沉贯过程中吸力锚中“水塞”和“土塞”的形成过程。吸力沉贯与压力贯入对比试验表明,负压导致的渗流显著降低了吸力锚的沉贯阻力,是中粗砂中得以沉贯的主要原因。基于试验成果,提出了模型试验条件下,吸力锚沉贯计算的理论公式。  相似文献   

7.
吸力式沉箱基础作为张力腿平台(TLP)的锚固基础,主要承受上拔荷载作用,然而软黏土中沉箱侧壁摩擦系数较小,排水条件下其抗拔承载力仅靠沉箱内外摩擦力与其自重组成,因此吸力式沉箱基础抗拔承载力较低。针对上述问题,提出一种重力式劲性复合吸力式沉箱基础,通过模型试验、推出试验以及大型直剪试验,研究了软黏土中新型吸力式沉箱基础抗拔承载特性以及沉箱–水泥土界面剪切特性。试验结果表明:新型吸力式沉箱基础抗拔承载力远高于传统吸力式沉箱基础抗拔承载力,且随附加荷载以及加固范围增加而增大;法向应力越大、水泥掺入比越高,水泥土抗剪强度以及沉箱–水泥土界面剪切强度越高;环肋沉箱中肋宽越宽,环肋上方剪切带面积越大,且水泥土剪切面与整体破坏面比值越高,沉箱–水泥土整体界面剪切强度越大;结合推出试验,提出了带肋沉箱模型界面破坏模式,建立了考虑法向应力作用下带肋沉箱–水泥土界面整体剪切强度计算公式,并进行相关参数分析与验证;最后结合等芯沉箱基础抗拔破坏模式,给出了新型吸力式沉箱基础抗拔承载力计算方法,揭示了软黏土中新型吸力式沉箱基础抗拔承载机理,为重力式劲性复合吸力式沉箱基础抗拔承载力分析以及工程设计提供参考。  相似文献   

8.
桶基负压沉贯下粉土中水力梯度的变化过程   总被引:3,自引:0,他引:3       下载免费PDF全文
通过5个不同材料及其大小的桶基在粉土中的负压沉贯实验测定桶基内不同深度处孔隙水压力的产生和发展,计算出桶基作用下粉土中渗流梯度的大小,揭示出负压沉贯过程中渗流梯度的变化过程,表明土体在沉贯前后性质的变化,为桶基的设计提供依据。  相似文献   

9.
吸力锚负压沉贯过程中锚内部常常产生土塞现象,这将阻碍锚体的进一步沉贯,影响吸力锚在海床土体中的安装深度,最终导致吸力锚承载力的降低,本研究通过1g条件下室内模型试验研究土塞的形成机理。通过试验模拟吸力锚水下砂土中吸力沉贯过程,借助高分辨率相机记录锚体整个沉贯过程,同时利用微型孔压传感器测量锚内外负压值随沉贯深度变化情况。试验过程中发现吸力锚内部土柱在向上渗流作用下发生细颗粒迁移现象,且随着沉贯深度的增大,土塞隆起的高度逐渐增加。提出土塞的形成是由于吸力锚内部土体膨胀引起的,进而引起渗透系数的增加。本研究分析了渗透系数在锚体沉贯过程中的变化情况,并对Houlsby和Byrne提出的吸力锚砂土中沉贯吸力计算模型进行了改进,从而获得更加准确的沉贯吸力随沉贯深度变化关系理论计算方法,为吸力锚的工程设计和施工提供理论依据。  相似文献   

10.
吸力基础近年来在海上风电工程中逐渐得到推广,我国海上风场地基广泛分布分层土,研究吸力基础在分层土中的沉贯特性有助于推动其在我国海上风电工程领域的应用。开展模型试验,探讨了土层分布形式(砂土、黏性土、上层砂土下层黏性土(简称上砂下黏)、上层黏性土下层砂土(简称上黏下砂))对吸力基础沉贯吸力值、沉贯阻力、土塞高度和土体变形的影响。研究发现在上砂下黏土层中,当基础贯入至土层分界处时,基础吸力值陡然增加;当吸力基础贯入至上黏下砂土层分界处时,基础内部吸力值陡然降低,通过有机玻璃吸力基础模型试验阐述了吸力变化的原因。不同土层条件下,基础内部最终土塞高度规律由高到低为:上黏下砂土层、单一砂土层、上砂下黏土层、单一黏性土层,阐明了不同土层分布情况下基础内部土塞形成机理。对于单一砂土层和上砂下黏地基,沉贯结束后,基础周围土体出现环形沉降区域,单一砂土地基中沉降区域范围大于上砂下黏地基情况。对于单一黏性土和上黏下砂土层中,沉贯结束后基础周围黏性土中产生裂缝,且吸力沉贯下土体裂缝数量及裂缝扩展范围大于压贯条件,土体最大裂缝范围约为1.9倍基础直径。  相似文献   

11.
In this study, model tests were conducted to investigate the bearing capacities of tripod caisson foundations subjected to eccentric lateral loads in silty clay. Lateral load–rotation curves of five eccentric-shaped tripod suction foundations were plotted to analyze the bearing capacities at different loading angles. It was observed that the loading angle significantly influenced the bearing capacity of the foundations, particularly for eccentric tripod caisson foundations. Compared with eccentric tripod caisson foundations, the traditional tripod foundation has a relatively high ultimate lateral capacity at the omnidirectional loading angle. By analyzing the displacement of the caissons, a formula for the rotational center of the tripod caisson foundation subjected to an eccentric lateral load was derived. The depth of the rotation center was 0.68–0.92 times the height of the caisson when the bearing capacity reached the limit. Under the undrained condition, suction was generated under the lid of the “up-lift” caisson, which helps resist lateral forces from the wind and waves.  相似文献   

12.
海上风电资源的开发和利用是当今世界关注的热点问题,作为其塔架的基础,主控荷载是水平荷载。裙式吸力基础具有更高的水平承载能力和控制水平位移的能力,故非常适合作为海上风电塔架的基础。通过饱和细海砂中裙式吸力基础的水平单调加载模型试验,探究基础水平承载力的影响因素及转动点位置的变化规律,并分析了地基土的变形影响范围及规律。研究发现:与传统吸力基础相比,裙式吸力基础的水平承载力提高显著,且能有效控制水平位移;水平承载力随基础的裙高、裙宽的增加而增大,随加载高度的增加而减小;在水平荷载作用下基础主要是绕某一点(即转动点)发生转动,转动点位于主桶长度的0.45~0.7倍之间;达到极限荷载时,地表隆起范围远远大于沉降范围,沿加载轴线方向,隆起范围约为2.5倍主桶直径。  相似文献   

13.
海上风机吸力沉箱基础承受结构自重及环境因素引起的竖向、水平、扭转荷载,处于复合加载状态。以位于饱和黏土地基上长径比为0.25~1.0的单桶沉箱基础为对象,ABAQUS为计算工具,研究沉箱基础的承载特性,并考虑沉箱与地基土的摩擦接触作用。首先分析沉箱基础在单一的竖向荷载、水平荷载及扭转荷载作用下的极限承载力,并给出沉箱基础在这些荷载组合下的破坏包络面,其中倾覆力矩通过施加偏心水平荷载实现。结果表明,沉箱基础的竖向承载力可用改进的经典承载力公式计算,而水平承载力系数在给定的接触条件下随沉箱长径比增加而减少,扭转承载力与理论预测结果非常吻合;扭转荷载对沉箱的竖向承载力影响较大,但对水平承载力影响较小;不同扭转荷载下的V-H包络面可用椭圆曲线拟合。  相似文献   

14.
桥梁吸力式沉箱基础承载特性试验研究   总被引:1,自引:0,他引:1  
吸力式沉箱基础是跨海桥梁基础的一个新选择。基于桥梁基础的受荷特点,考虑不同的荷载作用方式,通过一系列模型试验研究了砂土中吸力式沉箱基础的承载特性。试验结果表明:沉箱的长度越长,吸力式沉箱基础的竖向承载力越大,侧壁摩阻力的贡献越大,而沉箱端部阻力可忽略不计;沉箱的长度越长,吸力式沉箱基础的水平承载力也越高,但相对于竖向承载力而言,基础的水平承载力很小,一般不超过其竖向承载力的5%。预加一定的竖向荷载,可显著提高吸力式沉箱基础的水平承载力,且预加的竖向荷载越大,基础的水平承载力越高,由于桥梁工程中基础承受的竖向荷载很大,所以有必要考虑这一因素对基础水平承载力的提高。  相似文献   

15.
砂土中吸力式沉箱基础抗拔承载特性试验研究   总被引:1,自引:0,他引:1  
通过一系列的室内模型试验研究了砂土中吸力式沉箱基础的抗拔承载特性,着重分析了沉箱的长径比、荷载作用角度和荷载作用点位置的影响。试验中考虑了3个长径比,5个荷载作用角度和5个荷载作用点位置。试验结果表明,不同工况条件下吸力式沉箱基础在被拔出前所表现出来的荷载-位移特性各不相同。增大沉箱的长径比,可以显著提高吸力式沉箱基础的抗拔能力,但长径比的改变不影响吸力式沉箱基础的位移特征。荷载作用方向越接近于水平方向,吸力式沉箱基础的抗拔能力越强。当吸力式沉箱基础承受竖向上拔荷载作用时,荷载作用点位置的变化对其承载力的影响可以忽略;除荷载作用角度为90000b0;外,荷载作用于沉箱高度的2/3和3/4处时,基础的抗拔能力最强。  相似文献   

16.
通过对各种深水桥梁基础形式的比较,气压沉箱基础在施工质量、抗震性能等方面有着独特的优势。文章介绍了采用现代气压沉箱技术进行深水桥梁基础施工的主要流程,并初步探讨了该工法在实际应用中的技术难点,对其中的关键施工技术进行了详细分析,并提出相应的施工对策。最后通过一个国外工程实例介绍了气压沉箱工法在深水桥梁基础中的应用情况及效果,希望能为我国深水桥梁基础施工方案的选择提供参考。  相似文献   

17.
对苏通大桥沉井基础稳定性的计算分析表明,在满足基底承载能力要求时大型沉井的埋置深度不是越深越好,并且不需要太大。  相似文献   

18.
李一石 《山西建筑》2012,38(12):96-97
在陆域沉井不排水下沉阶段,根据工程所在位置,从经济和技术角度考虑,在沉井不排水取土下沉阶段采用冲吸泥工法,对该工法作了简要概述,解决了城市中沉井施工场地狭小取土下沉问题。  相似文献   

19.
《Soils and Foundations》2014,54(2):141-154
This paper proposes a steel pipe sheet pile (SPSP) reinforcement method for existing caisson foundations in water. The technique involves driving SPSPs around the caisson foundation and connecting them to it with reinforcing footing. To support the rational design of reinforcements using this method, the following factors influencing the technique׳s effectiveness and related mechanical behavior should be considered: (1) the conditions of the caisson/SPSP reinforcement footing connection; (2) the caisson/SPSP flexural rigidity ratio; (3) the distance between the caisson and the SPSP wall; and (4) the pile length. However, as the influence of these factors on the reinforcement effect and mechanical behavior has not yet been clarified, the current method has no standardization for the concept of the load transfer mechanism in reinforced foundation systems, and the ultimate lateral bearing capacity of existing caissons has been largely ignored in previous construction. This paper describes centrifuge model tests and three-dimensional elasto-plastic finite element total stress analysis conducted in relation to real cases in order to identify a more effective and rational reinforcement structure. The static lateral bearing capacity and seismic performance of reinforced foundations were investigated, and the following factors were considered: (1) the conditions of the caisson/SPSP reinforcement footing connection; (2) the caisson/SPSP flexural rigidity ratio; and (3) the pile length. Finally, a structural design flow is proposed based on the experimental and numerical simulation results. A chart to facilitate determination of appropriate reinforcement structures is also presented.  相似文献   

20.
《Soils and Foundations》2023,63(3):101311
Little analytical work has been done to elucidate the ultimate capacity of suction caissons under vertical tensile (V), lateral (H), and moment (M) loads in soils. In this paper, in order to reveal the effect of vertical tensile, lateral, and moment loads on the ultimate capacity of suction caissons in sand, an analytical investigation was made using a traditional bearing capacity theory. Taking account of the vertical equilibrium of an annular element of a skirt, through the vertical tractions inside and outside the skirt of a suction caisson when a vertical tensile load is applied, the vertical displacement of the soils adjacent to the skirt of the suction caisson was presented. The most appropriate bearing capacity equation for predicting the experimental results was shown for suction caissons having an embedment larger than a diameter in sand. For the deformation-load responses of suction caissons with various embedment ratios in sand, subjected to inclined tensile loads, there was a good agreement between the results obtained from laboratory tests and those predicted by the present method. The failure surfaces, considering the ultimate tensile capacity in the H-M, H-V, and M−V planes, and in the H-M−V space, for suction caissons in sand, were presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号