首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A new preparation method for supported MoO3 catalyst, slurry impregnation, has been described and compared with the conventional impregnation method. Slurry MoO3/water is used instead of the solution ammonium heptamolybdate, AHM [(NH4)6Mo7O24]. The MoO3/γ-alumina, MoO3/active carbon, and MoO3/silica catalysts with different Mo loadings were prepared by slurry and by conventional method. The low solubility of MoO3 was sufficient to transport molybdenum species from solid MoO3 to the adsorbed phase. The equilibrium was achieved after several hours at 95 °C based on the loading amount of molybdenum. Only the process of drying was needed; calcination was not necessary and was left out. This is an important advantage for active carbon support because oxidative degradation of active carbon impregnated by molybdena starts at a relatively low temperature of about 250 °C during calcination on air. The activity was tested in the transesterification of dimethyl oxalate (DMO) and phenol at 180 °C. The dependences of catalytic activity on Mo loadings for the slurry prepared catalysts were similar to the dependences for the samples prepared by the conventional impregnation method with AHM. The activities of the slurry impregnation MoO3/γ-Al2O3 catalysts were almost the same as those of catalysts prepared conventionally. Although the performances of slurry impregnation MoO3/SiO2 catalysts for transesterification of DMO were slightly better than those of the corresponding catalysts prepared by conventional impregnation, no waste solution and no calcining nitrogenous gases were produced. Therefore, we conclude that the new slurry impregnation method for preparation of supported molybdenum catalysts is an environmentally friendly process and a simple, clean alternative to the conventional preparation using solutions of (NH4)6Mo7O24. The present work will lead to a remarkable improvement in the catalyst preparation for the transesterification reaction.  相似文献   

2.
Drastic activity increases were observed by the treatments of the magnesium-rich MgMo0.99Oy catalysts, which are poorly active for the oxidative dehydrogenation of propane, with inorganic or organic acid to remove excess magnesium on the surface. MoO3 loading on magnesium-rich MgMo0.99Oy catalysts also resulted in drastic activity increases. The activity increases followed non-effective loadings of MoO3 in the range 0–2 wt%, because it is necessary to neutralize the surface magnesium with MoO3 before the formation of molybdenum-rich surface. The pH of the aqueous (NH4)6Mo7O24 solution for the MoO3 loading apparently influenced the activity. Under the acidic conditions the MoO3 loading resulted in the drastic activity increase but under the basic conditions the effect of the MoO3 loading was poor, suggesting that a cluster-type MoO3 on MgMoO4 surface is responsible for the activity of propane oxidative dehydrogenation.  相似文献   

3.
Mo–Sn–O systems were characterized by Raman spectroscopy and electrical conductivity measurements. The catalysts were obtained from precipitation of SnCl4 by ammonia in the presence of (NH4)2Mo7O24 using four different levels of Mo concentration. The electrical conductivity measurements showed that particles are formed by agglomeration of SnO2 crystals aggregated by polymolybdate. Raman spectroscopy suggested that four-coordinated species are dispersed at the external surface while six-coordinated species are inside the particles. For high Mo concentration (Mo >10%), octahedral coordinated species are also on the surface. Bulk MoO3 oxide was not observed. These results confirm the model previously proposed.  相似文献   

4.
Five cationic transition metal (ethylenediamine) complexes (M=Cr(III), Co(III), Ni(II), and Cu(II)):paramolybdate anion (Mo7O246−) have been synthesis and characterized via their elemental analysis, magnetic susceptibility (μeff), thermal analysis (TG and DTA), FTIR spectra, and X-ray diffraction (XRD). The FTIR study suggests that the compounds prepared be of the ion-pair type ([M(en)n]m·Mo7O24). Thermal study showed that molybdenum in the Cr(III), and Co(III) compounds is reduced from oxidation state (VI) to (V) at high temperature. The stoichiometries of the resulting mixed oxides at elevated temperatures (500–750°C) are: Cr2O3·7MoO2.5, Co2O3·7MoO2.5, 6CoOCl·7MoO2.5, 3NiO·7MoO3 and 3CuO·7MoO3. Above 750°C the molybdenum oxide in the ion-pair compounds start the sublimation process. X-ray diffraction of [Cr(en)3]·Mo7O24, [Co(en)3]·Mo7O24, and [Cu(en)2(H2O)2]3·Mo7O24 shows that these complexes are crystalline solids with a similar structure, while the [Ni(en)(H2O)4]3·Mo7O24, and [Co(en)(H2O)2Cl2]6·Mo7O24 ion-pair compounds display a different structure.

A novel technique based on photocatalysis to eliminate Cr(VI) ions, a toxic pollutant in the environment, was applied. The photoreduction of Cr(VI) to Cr(III) ion in aqueous suspensions using new-mixed oxides as photocatalysts (Cr2O3·MoO2.5, Co2O3·MoO2.5, NiO·MoO3, and CuO·MoO3) under air-equilibration and irradiation by a medium pressure mercury lamp (UV–VIS) was investigated.  相似文献   


5.
采用TG-DSC技术研究了钼酸铵和LaHY在空气气氛中的失重行为,考察了钼酸铵与LaHY的固相反应机理,用XRD、BET和NH3-TPD对其物相结构、比表面积和表面酸性进行了表征。结果表明,(NH46Mo7O24·4H2O分解产生的表相Mo物种借助固相反应以金属-氧簇定位在LaHY分子筛体相笼中形成nMoOx·LaHY单相复合体,引起分子筛的晶胞收缩,晶胞参数a0减小,比表面积下降。制备的nMoOx·LaHY较相应LaHY分子筛的弱酸中心变化较小,中强酸中心增加,强酸中心略有减少,总酸量增加。以质量分数为0.6%的二苯并噻吩/正癸烷溶液为模型反应物,评价了制备的nMoOx·LaHY催化剂的加氢脱硫性能。负载Mo质量分数为5.0%制得的nMoOx·LaHY催化剂在反应压力4.0 MPa,反应液时空速20 h-1,H2/原料液体积比500:1的实验条件下,290℃和310℃的二苯并噻吩加氢脱硫转化率达到了56.38%和88.79%,较相应负载Mo质量分数为20.0%制备的MoO3/Al2O3催化剂分别提高了约12个百分点和28个百分点,表现出了较高的二苯并噻吩加氢脱硫反应活性。  相似文献   

6.
MgO-supported Mo, CoMo and NiMo sulfide hydrotreating catalysts   总被引:2,自引:0,他引:2  
The most common preparation of high surface area MgO (100–500 m2 g−1) is calcination of Mg(OH)2 obtained either by precipitation or MgO hydration or sol–gel method. Preparation of MoO3/MgO catalyst is complicated by the high reactivity of MgO to H2O and MoO3. During conventional aqueous impregnation, MgO is transformed to Mg(OH)2, and well soluble MgMoO4 is easily formed. Alternative methods, that do not impair the starting MgO so strongly, are non-aqueous slurry impregnation and thermal spreading of MoO3. Mo species of MoO3/MgO catalyst are dissolved as MgMoO4 during deposition of Co(Ni) by conventional aqueous impregnation. This can be avoided by using non-aqueous impregnation. Co(Ni)Mo/MgO catalysts must be calcined only at low temperature because Co(Ni)O and MgO easily form a solid solution. Literature data on hydrodesulfurization (HDS) activity of MgO-supported catalysts are often contradictory and do not reproduced well. However, some results suggest that very highly active HDS sites can be obtained using this support. Co(Ni)Mo/MgO catalysts prepared by non-aqueous impregnation and calcined at low temperature exhibited strong synergism in HDS activity. Co(Ni)Mo/MgO catalysts are much less deactivated by coking than their Al2O3-supported counterparts. Hydrodenitrogenation (HDN) activity of Mo/MgO catalyst is similar to the activity of Mo/Al2O3. However, the promotion effect of Co(Ni) in HDN on Co(Ni)Mo/MgO is lower than that on Co(Ni)Mo/Al2O3.  相似文献   

7.
The catalytic behaviour of multiphasic catalysts based on -bismuth pyrostannate, Bi2Sn2O7, was investigated in the selective oxidation of isobutene into methacrolein. When -Bi2Sn2O7 is mixed with MoO3, strong cooperation effects on the yield and selectivity in methacrolein occur. However, XRD analyses performed on samples after test revealed the formation of a low quantity of -bismuth molybdate, -Bi2Mo3O12, when the reaction temperature exceeded 673 K. Additional experiments were therefore carried out on the “Bi–Sn–Mo–O” catalysts in order to shed light on the role of Bi2Mo3O12 in the synergetic effects observed in the Bi2Sn2O7–MoO3 system. The experimental results are discussed in terms of several hypotheses. First, the intrinsic activity of Bi2Mo3 O12 is probably the simplest explanation for the synergetic effects, although experiments have shown that this phase present in a low quantity is only poorly active. Second, catalytic tests made on Bi2Sn2O7–Bi2Mo3O12 mechanical mixtures have evidenced a cooperation between these two ternary oxides, particularly when Bi2Sn2O7 was the major component of the mixture. Consequently, it is likely that a synergy between Bi2Sn2O7 and the in situ generated Bi2Mo3O12 might play a role in the synergy observed in the Bi2Sn2O7–MoO3 association. Third, as bismuth pyrostannate was previously shown to behave as an oxygen donor phase with respect to WO3, a remote control mechanism could therefore occur between Bi2Sn2O7 and MoO3, independently from the formation of -Bi2Mo3O12.  相似文献   

8.
D. Bayot  B. Tinant  M. Devillers   《Catalysis Today》2003,78(1-4):439-447
In the frame of research aimed at developing new synthetic procedures of multimetallic Nb-based catalysts, peroxo complexes of niobium(V) of general formula AI3[Nb(O2)4] and AI3[Nb(O2)x(HyL)]·nH2O (AI: NH4+, CN3H6+ (gu); L: oxalate, tartrate, citrate) have been prepared and characterized on the basis of elemental and thermal analysis, FTIR and 13C-NMR spectra. The crystal structure of (gu)3[Nb(O2)4] and (gu)3[Nb(O2)2(C2O4)2]·2H2O have been determined. The application of the obtained Nb complexes as precursors for the preparation of silica-supported Nb–Mo–O catalysts has been demonstrated. Combining Nb peroxo-carboxylato compounds with analogous Mo(VI) compounds in a silica-impregnation method carried out in aqueous medium leads to the formation of the supported Nb2Mo3O14 phase.  相似文献   

9.
A single-step complex decomposition method for the synthesis of bulk and alumina-supported γ-Mo2N catalysts is described. The complex precursor (HMT)2(NH4)4Mo7O24·2H2O (HMT: hexamethylenetetramine) is converted to γ-Mo2N under a flow of Ar in a temperature range of 823–1023 K. Furthermore, decomposition of the precursor in a NH3 flow forms γ-Mo2N in a temperature range of 723–923 K. Compared with direct decomposition of the precursor in Ar, the reaction in NH3 shows obvious advantages that the nitride forms at a lower temperature. In addition, alumina-supported γ-Mo2N catalysts with different nitride loadings can be prepared from the alumina-supported complex precursor in the Ar or NH3 flow. The resultant catalysts exhibit good dibenzothiophene HDS activities, which are similar to the γ-Mo2N/γ-Al2O3 prepared by traditional TPR method. The catalyst prepared by decomposition in an Ar flow exhibits highest activity. It proves that such a single-step complex decomposition method possesses the potential to be a general route for the preparation of molybdenum nitride catalysts.  相似文献   

10.
In this work, we explored the potential of mesoporous zeolite-supported Co–Mo catalyst for hydrodesulfurization of petroleum resids, atmospheric and vacuum resids at 350–450°C under 6.9 MPa of H2 pressure. A mesoporous molecular sieve of MCM-41 type was synthesized; which has SiO2/Al2O3 ratio of about 41. MCM-41 supported Co–Mo catalyst was prepared by co-impregnation of Co(NO3)2·6H2O and (NH4)6Mo7O24 followed by calcination and sulfidation. Commercial Al2O3 supported Co–Mo (criterion 344TL) and dispersed ammonium tetrathiomolybdate (ATTM) were also tested for comparison purposes. The results indicated that Co–Mo/MCM-41(H) is active for HDS, but is not as good as commercial Co–Mo/Al2O3 for desulfurization of petroleum resids. It appears that the pore size of the synthesized MCM-41 (28 Å) is not large enough to convert large-sized molecules such as asphaltene present in the petroleum resids. Removing asphaltene from the resid prior to HDS has been found to improve the catalytic activity of Co–Mo/MCM-41(H). The use of ATTM is not as effective as that of Co–Mo catalysts, but is better for conversions of >540°C fraction as compared to noncatalytic runs at 400–450°C.  相似文献   

11.
The surface structure analysis of a model catalyst MoOx/TiO2(110) was for the first time performed by polarization-dependent total-reflection fluorescence X-ray absorption fine structure (PTRF-XAFS) in three different directions of the crystal surface. Two samples of MoOx/TiO2(110) were prepared by an impregnation of (NH4)6Mo7O24·4H2O using ultra high purity water and normal distilled water. The PTRF-XAFS analysis revealed that anisotropic Mo dimer species was preferentially formed on the TiO2(110) surface, with Mo–Mo bond (0.335 nm) parallel to the direction when the ultra high purity water was used as the solvent. On the other hand, the Mo oxide on the surface prepared using normal distilled water had a symmetric tetrahedral structure (MoO4) with Mo–O of 0.176 nm, which was due to the coexistence of alkaline metals at the surface.  相似文献   

12.
The phase transition of hBN-cBN in the B-N-H-O system   总被引:1,自引:0,他引:1  
The physical-chemical processes are responsible for hBN-cBN conversion in the B-N-H-O system were studied in region of pressure 3.5–7.2 GPa and temperature up to 1400°C by means of in situ differential thermal analysis (DTA) and the quenched method. The absence of intermediate solid phases in products of the interaction of hBN with melts of anhydrous ammonium borates has confirmed the supposition about the activating effect of these melts on the kinetic of the conversion. A scheme of the part of T,c phase diagram on the (NH4)2O-B2O3 line was built at 6 GPa. Three peritectics corresponding to the dissociation of proposed NH4BO2, (NH4)2B4O7 and (NH4)4B10O17 were found. The connection of the lower-temperature limits of cBN synthesis regions with the found peritectics in the range of 5.5–7.2 GPa was established. The formal critical composition of the melt was 3(NH4)2O:7B2O3, because the appearance of cBN was fixed in the product beginning with just this composition. However, the question about critical melt composition activating hBN-cBN conversion has no correct solution without information about short-range order structure and relaxation kinetics of the melts. Two unknown anhydrous ammonium borates were found in HPHT products. One of these compounds was determined to be (NH4)4B10O17. It crystallizes in a orthorhombic cell with a=12.82 Å, b=11.30 Å, c=9.52 Å, a measured density of 2.10 g cm−3, a calculated density of 2.21 g cm−3 at Z=4. At normal conditions (NH4)4B10O17 is metastable but it can be preserved a long time in a “dry” atmosphere.  相似文献   

13.
Photodegradation catalyst screening by combinatorial methodology   总被引:1,自引:0,他引:1  
In this work, a combinatorial methodology was developed for photodegradation catalyst screening. A fluorescence imaging detection system was designed for high throughput analysis, 1,6-hexamethylenediamine was used as the probe molecule for catalyst testing. The photodegradation activity of catalysts was evaluated by 1,6-hexamethylenediamine consumption during the photodegradation reaction. The methodology could provide reliable results. We found that pure TiO2, ZrO2, Nb2O5, MoO3, and WO3 did not show much activity for 1,6-hexamethylenediamine photodegradation under visible light. TiO2 catalysts doped with different metal ions were tested. When TiO2 was doped with Ta2O5, Nb2O5, V2O5, MoO3, or WO3, higher activity for photodegradation was observed. The doping of La3+, Ba2+, and Br to TiO2 did not improve the catalytic activities. When doping TiO2 with Mn2+, Cl, Al3+, Cu2+, Fe3+, Na+, Mg2+, Li+, F, Co2+, or K+, catalytic activity was lower than that of pure TiO2. After elaborate catalysts screening, we discovered new catalysts, such as 50–70% TiO2/0–20% WO3/20–40% VO2.5 and 20–30% TiO2/30–50% MoO3/40–60% VO2.5 as well as 30% WO3/20% ZrO2/50% NbO2.5 (synthesized from ZrCl4, NbCl5, and (NH4)5H5[H2(WO4)6]·H2O in ethanol solution or suspension) and 60–70% WO3/Nb2O5 (synthesized from WCl6 and NbCl5 in ethanol solution). We observed that the catalytic activity is sensitive to preparation methods and catalyst specific surface areas. When P123 (HO(CH2CH2O)20(CH2CH(CH3)O)70(CH2CH2O)20H, designated EO20PO70EO20) was used as template to synthesize mesoporous materials, the mesoporous catalysts showed higher activity than regular catalytic materials.  相似文献   

14.
A novel TiO2/Al2O3/cordierite honeycomb-supported V2O5–MoO3–WO3 monolithic catalyst was studied for the selective reduction of NO with NH3. The effects of reaction temperature, space velocity, NH3/NO ratio and oxygen content on SCR activity were evaluated. Two other V2O5–MoO3–WO3 monolithic catalysts supported on Al2O3/cordierite honeycomb or TiO2/cordierite honeycomb support, two types of pellet catalysts supported on TiO2/Al2O3 or Al2O3, as well as three types of pellet catalysts V2O5–MoO3–WO3–Al2O3 and V2O5–MoO3–WO3–TiO2 were tested for comparison. The experiment results show that this catalyst has a higher catalytic activity for SCR with comparison to others. The results of characterization show, the preparation method of this catalyst can give rise to a higher BET surface area and pore volume, which is strongly related with the highly active performance of this catalyst. At the same time, the function of the combined carrier of TiO2/Al2O3 cannot be excluded.  相似文献   

15.
使用不同改性液H_2SO_4-H_2O_2、(NH_4)_2CO_3-H_2O_2、(NH_4)HF_2-H_2O_2和(NH_4)_2CO_3+(NH_4)HF_2-H_2O_2混合溶液对中空钛硅分子筛进行改性。采用XRD、UV-Vis和拉曼光谱进行表征分析,考察改性前后钛硅分子筛在环己烷氧化反应的催化性能。结果表明,改性过程没有破坏钛硅分子筛的MFI拓扑结构,但提高了钛硅分子筛相对结晶度,并脱除了部分锐钛矿相TiO_2;与未改性钛硅分子筛相比,环己醇和环己酮选择性及H_2O_2有效利用率明显提高,以改性液(NH_4)_2CO_3+(NH_4)HF_2-H_2O_2改性钛硅分子筛效果最佳,醇酮选择性提高12.78个百分点,H_2O_2有效利用率提高17.33个百分点;(NH_4)_2CO_3+(NH_4)HF_2-H_2O_2混合溶液改性钛硅分子筛显著降低H_2O_2用量,在己内酰胺生产过程中有很好的应用前景。  相似文献   

16.
Pure Bi2Mo3O12, Bi2Mo2O9, Bi2MoO6, MoO3 and -Sb2O4 and their mechanical mixtures were investigated in the oxygen-assisted dehydration of 2-butanol at atmospheric pressure and at low temperature (220 and 250°C). All catalysts were characterized before and after the catalytic reaction by BET surface area measurement, Raman spectroscopy, XRD and XPS. A strong parallelism is confirmed with the results obtained in the selective oxidation of olefins. In the frame of the remote control concept, , β and γ-bismuth molybdates are able to play a dual role: donor of spillover oxygen (Oso) with respect to MoO3, and acceptor of Oso with respect to -Sb2O4. On one hand, this duality leads to mutual increase of activity when the bismuth molybdates are mixed together. In the presence of MoO3, the phase seems to be a stronger Oso donor than β and γ, and β has a donor strength between and γ. On the other hand, when the Bi molybdates are reacted in the presence of a big quantity of spillover oxygen, like in a mixture with -Sb2O4, they undergo a dramatic decrease of activity. The phenomenon originates from the full oxidation of the reduced Mo species to Mo6+ induced by Oso. In parallel with other reactions involving oxygen, this confirms that the real active and selective state of molybdenum-containing oxides is that slightly reduced possessing Mo5+.  相似文献   

17.
A number of supported metal oxide catalysts were screened for their catalytic performance for the oxidation of carbon black (CB; a model diesel soot) using NO2 as the main oxidant. It was found that contact between the carbon and catalyst was a key factor in determining the rate of oxidation by NO2. Oxides with low melting points, such as Re2O7, MoO3 and V2O5 showed higher activities than did Fe3O4 and Co3O4. The activities of MoO3 and V2O5 on various supporting materials were also examined. MoO3/SiO2 was the most active catalyst among the supported MoO3 examined, whereas, V2O5/MCM-41 showed the highest activity among the supported V2O5. Different performances of the supported MoO3 catalysts were explained by the interaction of MoO3 with the supports: a strong MoO3/support interaction may result in a poor mobility of MoO3 and a poor activity for oxidation of carbon by NO2. The high activity of V2O5/MCM-41 was associated with its catalysis of the oxidation of SO2 by NO2 to form SO3, which substantially promotes oxidation of carbon by NO2. Addition of transition metal oxides or sulfates to supported MoO3 and V2O5 was also investigated. Combining MoO3 or V2O5 with CuO on SiO2, adding VOSO4 to MoO3/SiO2 or MoO3/Al2O3 and adding TiOSO4 or CuSO4 to V2O5/Al2O3 improved the catalytic performance.  相似文献   

18.
The visible light induced photocatalytic activity of tungsten trioxide powders   总被引:16,自引:0,他引:16  
The preparation, characterization and photoreactivity of tungsten trioxide powders are presented. Tungsten trioxide powders were prepared by air annealing of various W precursors. The effects of W precursor type and pretreatment conditions on the physical properties, and photocatalytic performance of the obtained WO3 powders were examined. The photooxidation of water to oxygen and protons in the presence of reducible additives Ce4+, using the luminous and near IR illumination was used as a test reaction to evaluate the activity of the powders. Increasing annealing temperatures gave materials with a high degree of crystallinity and red-shifted the onset of light absorption. The light absorption of the obtained powders in the long wavelength region versus the type of the W precursor increased in the order: H2WO4<(NH4)6W12O39<(NH4)10W12O41. The level of crystallinity of the obtained powders increased in the order: (NH4)10W12O41≈(NH4)6W12O392WO4. The activity of the WO3 powders depended on the type of W precursor used, annealing conditions, and the physico-chemical characteristics of the resulting powders. The activity according to the types of the W precursor increased in the order: (NH4)10W12O41<(NH4)6W12O392WO4. The activity as a function of annealing temperature and duration of W precursors goes through a maximum at 700–800°C and 4–8 h, respectively. Increasing the specific surface area of WO3 powders, did not alter the activity significantly. Addition of 0.1–1% Pt and RuO2 as co-catalysts improved the initial rates and long-term activity by about 1.3–1.5 times. Small amounts of hydrogen were also produced from photochemical reactions involving the photoexcitation of Ce3+.  相似文献   

19.
The preparation of alumina-supported β-Mo2C, MoC1−x (x≈0.5), γ-Mo2N, Co–Mo2C, Ni2Mo3N, Co3Mo3N and Co3Mo3C catalysts is described and their hydrodesulfurization (HDS) catalytic properties are compared to conventional sulfide catalysts having similar metal loadings. Alumina-supported β-Mo2C and γ-Mo2N catalysts (Mo2C/Al2O3 and Mo2N/Al2O3, respectively) are significantly more active than sulfided MoO3/Al2O3 catalysts, and X-ray diffraction, pulsed chemisorption and flow reactor studies of the Mo2C/Al2O3 catalysts indicate that they exhibit strong resistance to deep sulfidation. A model is presented for the active surface of Mo2C/Al2O3 and Mo2N/Al2O3 catalysts in which a thin layer of sulfided Mo exposing a high density of sites forms at the surface of the alumina-supported β-Mo2C and γ-Mo2N particles under HDS conditions. Cobalt promoted catalysts, Co–Mo2C/Al2O3, have been found to be substantially more active than conventional sulfided Co–MoO3/Al2O3 catalysts, while requiring less Co to achieve optimal HDS activity than is observed for the sulfide catalysts. Alumina-supported bimetallic nitride and carbide catalysts (Ni2Mo3N/Al2O3, Co3Mo3N/Al2O3, Co3Mo3C/Al2O3), while significantly more active for thiophene HDS than unpromoted Mo nitride and carbide catalysts, are less active than conventional sulfided Ni–Mo and Co–Mo catalysts prepared from the same oxidic precursors.  相似文献   

20.
Carbon oxidation with platinum supported catalysts   总被引:3,自引:0,他引:3  
The effect of the support oxide, Pt precursor and reactant gas composition on the catalysis of soot oxidation was investigated using carbon black as a model soot and simulated exhaust gases. The Pt precursors used were Pt(NH3)4(OH)2, H2PtCl6·6H2O, Pt(NH3)4(NO3)2, and Pt(NH3)4Cl2. The support metal oxides used were SiO2, Al2O3, and ZrO2. Pt/SiO2 prepared from Pt(NH3)4(OH)2 showed the highest carbon oxidation activity. It had much higher activity in the condition of N2+O2+H2O+NO+SO2 than without NO and SO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号