首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 399 毫秒
1.
采用正交试验设计方法,以国产聚乙烯醇(PVA)纤维作为增强纤维,研究了水胶比、粉煤灰掺量和胶砂比对高韧性纤维增强水泥基复合材料单轴拉伸性能的影响。研究结果表明:在较大水灰比和粉煤灰掺量达到70%的情况下,选用国产PVA纤维,仍然可以配制出成本低/单轴拉伸应力应变达到1%,且具有多微裂缝开裂特征的高韧性纤维增强水泥基复合材料。  相似文献   

2.
为实现纤维增强延性水泥基复合材料高强度与高延性的匹配,在原有材料体系中附加钢纤维,试验研究了混杂聚乙烯醇(PVA)/钢纤维增强延性水泥基复合材料的轴拉、抗压性能.结果表明:随着钢纤维掺量的增加,混杂纤维增强延性水泥基复合材料开裂强度和抗拉强度不断提高,裂纹宽度显著降低,且钢纤维对高强基材的作用效果更加显著;当钢纤维掺量适量时,混杂纤维增强延性水泥基复合材料的极限拉应变得到有效提升,而钢纤维掺量对抗压性能的影响并不显著;PVA纤维和钢纤维混杂可获得高强度、高延性和低裂纹宽度的水泥基复合材料.  相似文献   

3.
进行了泵送C40钢纤维、聚丙烯混杂纤维混凝土的配合比优化研究,在混凝土配合比设计中选定了水胶比、砂率、钢纤维掺量、聚丙烯纤维掺量、单位用水量和粉煤灰掺量六个因素,并考虑钢纤维掺量与聚丙烯纤维掺量的交互作用进行了正交试验。通过极差分析和方差分析。明确了各因素对新拌混凝土坍落度、28d抗压强度和28d劈拉强度等力学性能的影响。针对混杂纤维对混凝土的增强机理,引用了总功效系数这一指标。对各个考核指标进行了考查,得到了钢纤维、聚丙烯混杂纤维混凝土的最优组合条件,再经扩展试验确定了泵送C40钢纤维、聚丙烯混杂纤维增强混凝土的推荐配合比。  相似文献   

4.
使用沙漠砂制备了纤维增强水泥基材料,采用正交试验法研究了沙漠砂掺量、粉煤灰掺量、可再分散性乳胶粉掺量、纤维掺量以及水胶比对抗压强度和抗折强度的影响,并确定了最优配合比。采用单因素试验法探讨了石英砂取代沙漠砂对纤维增强水泥基材料力学性能的影响。试验结果表明,纤维掺量是影响沙漠砂纤维增强水泥基材料抗压、抗折强度指标最显著的因素;相比于石英砂,使用沙漠砂制备的纤维增强水泥基材料的抗折强度和劈裂抗拉强度均得到提高,但抗压强度降低。  相似文献   

5.
通过正交试验研究了水胶比、砂胶比、粉煤灰掺量和剑麻纤维掺量对水泥基路面材料抗压性能和弯拉性能的影响。结果表明,高延性剑麻纤维水泥基路面材料的最佳配合比为:水胶比0.30、砂胶比0.4、粉煤灰掺量30%、剑麻纤维掺量0.5%,此时,试件的弯拉强度满足JTG D40—2011《公路水泥混凝土路面设计规范》的要求,且抗压强度较高,为66.62 MPa。  相似文献   

6.
姚仲泳 《工业建筑》2022,(3):171-176+215
为了降低传统工程水泥基复合材料(ECC)的干燥收缩应变,减小混凝土与ECC之间的收缩差异,首先确定水胶比和砂胶比,使得ECC的尺寸变化率与混凝土变形协调;其次,基于正交法研究粉煤灰掺量、矿粉掺量和PVA纤维掺量对ECC干燥收缩率的影响,进一步优化干燥收缩值。最后,研究该配合比ECC的拉、压、弯性能,以保证结构构件的力学性能。结果表明:ECC的收缩应变随着水胶比和砂胶比的增加而增大,且水胶比对干燥收缩的影响远大于砂胶比;另外,随着粉煤灰掺量、矿粉掺量和PVA纤维掺量的增加而减小,其中粉煤灰对干燥收缩的抑制效果最佳,矿粉次之,PVA纤维对其影响最小。低干缩ECC的抗压强度达44.5 MPa以上,抗拉和抗弯强度分别超过2.5,10 MPa,极限拉应变稳定超过3%。  相似文献   

7.
刘雁宁  张涛  李杉 《混凝土》2022,(1):112-115
对混掺聚乙烯醇纤维(PVA)与12 mm两端直勾型精细钢纤维的水泥基复合材料进行立方体抗压和哑铃试件轴向拉伸试验,分析纤维掺量对混掺纤维水泥基复合材料抗压、抗拉强度和韧性的影响规律。结果表明:混掺精细钢纤维可以提高水泥基复合材料的立方体抗压强度、抗拉强度和韧性;随着精细钢纤维的增加,其抗压强度、抗拉强度和极限拉应变呈先增大后降低的趋势,当精细钢纤维掺量为1.2%时,28 d立方体抗压强度平均值比单掺PVA纤维提高了61.9%;当精细钢纤维掺量为0.8%时,28 d抗拉强度和极限拉应变分别比单掺PVA纤维提高了56.9%和240%。  相似文献   

8.
高延性纤维增强水泥基复合材料(ECC)是一种高韧性延性土木工程材料,通过对13组288个ECC试件进行单轴抗压、劈裂抗拉及四点弯曲等试验,分析聚乙烯醇纤维(PVA)掺量、水胶比及粉煤灰掺量对ECC力学性能的影响规律。研究表明:水胶比及粉煤灰掺量是影响其抗压强度的主要因素,增加PVA掺量,ECC抗压强度变化较小,峰值应变值及极限应变值明显提高,峰值后延性较好;随着水胶比增加,ECC抗拉强度及抗弯强度降低,增加PVA掺量可明显提高抗拉及抗弯强度,PVA掺量为2.0%的ECC抗拉强度较基体提高53%,抗弯强度及弯曲韧度系数分别是相应基体的2.8倍及7倍,ECC在各种破坏荷载作用下可保持良好的整体性,未发生脆性破坏。  相似文献   

9.
单面盐冻环境下PVA纤维水泥基复合材料的冻融破坏反映了路面、桥面由于除冰盐造成破坏的工程实际情况。本文通过单面盐冻试验研究PVA纤维掺量、水胶比、粉煤灰掺量对水泥基复合材料抗冻性能的影响,试验结果表明,纤维掺量在0~2%之间时制备的PVA纤维水泥基复合材料,随着纤维掺量的增加抗冻性能增强;水胶比在0.27~0.4之间时制备的PVA纤维水泥基复合材料,随着水胶比的增大抗冻性能减弱;粉煤灰掺量在45%~50%之间时,PVA纤维水泥基复合材料表现出良好的抗冻性能。并用二参数Weibull分布模型分析了PVA纤维水泥基复合材料的冻融损伤,建立了考虑纤维掺量、水胶比、粉煤灰掺量三因素的冻融损伤模型,模型计算值与试验值吻合良好,表明本文建议的模型可用于PVA纤维水泥基复合材料冻融损伤分析,为进一步研究其冻融损伤规律提供参考。  相似文献   

10.
通过不同配合比对高延性纤维增强水泥基复合材料进行稠度、抗压和抗折强度试验,分析研究水胶比、砂胶比、纤维掺量对高延性纤维增强水泥基复合材料(ECC)的性能影响。试验结果表明:随着水胶比增大,ECC的抗压强度逐渐降低,在0.30~0.40水胶比范围内,水胶比对28 d抗折强度影响较小;随着聚乙烯醇纤维掺量增加,ECC的抗压和抗折强度逐渐上升;砂胶比对水泥基复合材料的抗压和抗折强度影响较小。  相似文献   

11.
采用正交试验方法,设计了16组延性纤维混凝土试件,通过28,56,90 d立方体抗压试验和56d抗弯试验,研究了纤维掺量、水胶比、砂胶比和粉煤灰掺量对其力学性能的影响。试验表明:1)纤维桥联作用显著提高了混凝土的抗压韧性和延性;2)粉煤灰掺量和水胶比对抗压强度影响显著,纤维掺量和砂胶比的影响较小;3)纤维掺量对抗折强度的影响较显著,粉煤灰掺量、水胶比和砂胶比对抗弯强度的影响较小,但对试件延性均有一定影响。根据正交试验结果和延性纤维混凝土配合比设计参数分析,确定了具有较高延性并保证强度的延性纤维混凝土的最优配合比。  相似文献   

12.
采用正交试验方法,对玄武岩纤维水泥基复合材料(Basalt Fiber Cement Composites,BFCC)进行配合比设计。选取水胶比、砂胶比、玄武岩纤维掺量、粉煤灰/水泥替代率,天然砂替代率五个因素,每个因素设定四个水平,对BFCC的力学性能进行研究,利用矩阵分析法分析各因素对BFCC抗压、抗折强度的影响,并确定最优配合比。结果表明:对BFCC抗压强度的影响权重依次为:水胶比粉煤灰替代率天然砂替代率砂胶比玄武岩纤维掺量;对BFCC抗折强度的影响权重依次为:水胶比粉煤灰替代率天然砂替代率玄武岩纤维掺量砂胶比;BFCC优选配合比为:水胶比0.18,砂胶比1.2,玄武岩纤维掺量4 kg/m~3,粉煤灰替代率40%,天然砂替代率33%;采用天然砂替代部分石英砂,粉煤灰替代部分水泥,在一定范围内可有效提高BFCC的强度,具有良好的经济效益。  相似文献   

13.
设计了10组ECC试件,并进行了哑铃型单轴拉伸和薄板四点弯曲试验,研究了粉煤灰掺量、水胶比和PVA纤维体积率对ECC拉伸性能与弯曲性能的影响。结果表明,增加粉煤灰掺量,ECC试件抗拉强度和抗弯强度均先增大后减小,当粉煤灰掺量为1.2时,ECC的受拉应变-硬化特性最明显,极限拉应变可稳定达到4.7%以上;增大水胶比,ECC的抗拉强度和抗弯强度降低,但极限拉应变增大且受拉应变-硬化特性明显;增大PVA体积率可明显提高ECC的抗拉强度、极限拉应变和抗弯强度。  相似文献   

14.
对12组超高韧性水泥基复合材料(UHTCC)进行流动性、抗压强度、劈裂抗拉强度和抗弯强度试验,探讨胶凝材料与纤维种类对UHTCC性能的影响。结果表明,单掺2.0%镀铜钢纤维时,抗压强度和劈裂抗拉强度最佳;镀铜钢纤维掺量的增加,拉压比、抗弯试验峰值荷载以及韧度因子明显增大,抗弯性能与韧性能力得到提升;随着硅灰掺量、镀铜钢纤维掺量增大以及聚丙烯纤维的掺入,拌合物的流动性变差;当水泥掺量为胶凝材料质量的70%,粉煤灰与硅灰掺量皆为15%时,拌合物流动性良好,有利于纤维发挥增韧作用;当镀铜纤维与聚丙烯纤维组合时,较单掺镀铜钢纤维,抗压强度与劈裂抗拉强度显著提升,特别是抗弯强度试验峰值荷载明显增大。  相似文献   

15.
工程用水泥基复合材料(Engineered Cementitious Composites,简称ECC)的高延性、高韧性和独特的多缝开裂特性,满足可持续发展社会对基础设施建设高安全性和高耐久性的要求。目前配置ECC的聚乙烯醇纤维(Polyvinyl Alcohol,简称PVA)主要由日本可乐丽公司生产,成本较高,使ECC在实际工程中的大规模应用变得十分困难。为此,研究国产PVA-ECC的可行性及制备方法十分必要。首先基于微观力学模型,对采用国产PVA纤维配制ECC的可行性进行了探讨,并通过参数分析,确定了国产PVA-ECC配合比的优化方向。对设计的11组不同配合比的ECC试件进行单轴压缩试验和四点弯试验,研究水泥/粉煤灰比、水胶比、PVA纤维体积掺量对ECC抗拉强度、弯曲韧性和抗压强度的影响,据此提出了国产PVA-ECC的较优配合比。国产PVA-ECC的研发,降低ECC的成本,使得ECC大量应用于工程实践成为可能。  相似文献   

16.
混杂纤维延性水泥基材料单轴受压力学特性   总被引:1,自引:1,他引:0  
针对纤维增强延性水泥基材料(ECC)在高强度等级下的抗压韧性退化问题,在传统ECC体系中附加微细钢纤维,制备混杂聚乙烯醇(PVA)-钢纤维增强延性水泥基材料.通过圆柱体抗压试验研究混杂纤维延性水泥基材料的单轴受压力学特性.结果表明:随着钢纤维掺量的增加,材料受压应力-应变曲线的上升段斜率呈增大趋势,而曲线下降段逐渐平缓,残余应力水平显著提升;混杂纤维延性水泥基材料的单轴抗压强度、弹性模量和峰值应变随钢纤维掺量增加小幅提升,而材料抗压韧性指标的提升效果较为显著;PVA纤维与钢纤维混杂在改善ECC抗压韧性方面具有独特优势,实现了高强ECC的抗压韧性.  相似文献   

17.
PVA纤维增强水泥基复合材料(PVA-ECC)具有韧性高、吸能能力强、高耐久性和不易发生脆性破坏等优点,但其材料中的细砂采用的是最大粒径1.18mm的精细河砂,用砂量较大、成本较高,且不利于水土保持和环境保护。以沙漠砂部分替代PVA-ECC中的天然河砂,提出沙漠砂PVA-ECC,以水胶比、粉煤灰掺量、PVA纤维掺量、沙漠砂替代量4个因素设计了四因素四水平的正交试验,通过对沙漠砂PVA-ECC 7d,28d的抗压性能、抗劈裂性能和抗折性能进行极差和方差分析,确定了沙漠砂PVA-ECC的最优配合比。结果表明:水胶比、粉煤灰掺量是影响沙漠砂PVA-ECC抗压强度的最显著因素,沙漠砂的替代量对PVA-ECC的抗压强度、抗劈裂强度和抗折强度影响较小。  相似文献   

18.
TRC永久模板因不需要钢筋保护层,其厚度可以很薄,由此给水泥基复合材料提出了更高要求。为了获得最佳性能的水泥基复合材料配合比,通过控制短切玻璃纤维掺量、水胶比和灰砂比研究水泥复合材料的抗压强度、抗折强度和劈裂抗拉强度。研究表明,纤维掺量对提高材料力学性能有较好的效果,但应控制其掺量在5%左右。水胶比0.33及胶砂比0.3时力学性能最好,水胶比过大容易引起泌水现象。  相似文献   

19.
通过聚乙烯醇纤维增强水泥基复合材料(PVA-ECC)轴向拉伸试验,研究了水胶比、PVA纤维掺量、砂的种类和级配对PVA-ECC拉伸性能的影响,并利用扫描电镜(SEM)分析了砂种类和级配的影响机理。结果表明:当水胶比在0.28~0.34范围内时,PVA-ECC的极限拉应变随水胶比的增大而降低,当水胶比由0.28增至0.32时,PVAECC的极限拉应变仍大于3.0%,而当水胶比达到0.34时,PVA-ECC的极限拉应变小于3.0%;随着PVA纤维掺量的增加,PVA-ECC的极限抗拉强度增大,但极限拉应变呈先减小后增大的趋势;砂的种类和级配对PVA-ECC的拉伸性能有影响,选择粒径为0.075~0.150 mm的石英砂作为PVA-ECC的细骨料对PVA-ECC的拉伸性能最有利。  相似文献   

20.
采用正交试验方法,考虑纤维掺量、水胶比、砂胶比和粉煤灰掺量的影响,设计了16组延性纤维混凝土试件,采用四点弯曲试验评定其抗弯性能。通过对弯曲初裂强度、极限抗弯强度、等效弯曲强度和弯曲韧性指数的分析可得:纤维的掺入改变了试件的破坏模式,显著提高了材料的抗弯强度和弯曲韧性;纤维掺量对抗弯性能影响显著,纤维掺量越大,抗弯强度和弯曲韧性越高;水胶比和砂胶比的影响次之,粉煤灰掺量的影响最小,水胶比不低于0.29,砂胶比不超过0.36时,延性纤维混凝土均具有较高的弯曲韧性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号