首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 952 毫秒
1.
通过热重、元素和XRD分析,研究了新疆吉木萨尔县石长沟矿区油页岩在不同升温速率下的热解特性及热解机理. 结果表明,油页岩中有机质热解生成页岩油和热解煤气的反应主要集中在300~550℃;升温速率从3℃/min增至15℃/min,热解反应向高温区移动,有机质完全热解温度从530℃升至575℃. 油页岩有机质的热解动力学分析显示,升温速率从3℃/min增至15℃/min,直接Arrhenius法计算的有机质热解活化能从243.52 kJ/mol增至257.32 kJ/mol;反应转化率从0.02增至0.97,Friedman法计算的活化能从96.39 kJ/mol增至292.84 kJ/mol.  相似文献   

2.
选取中国桦甸、抚顺、窑街3个地区油页岩,酸洗得到各干酪根样品。应用TG-FTIR技术对不同升温速率下各干酪根与蒙脱石共热解行为进行了研究,并利用Coats-Redfem积分法对升温速率为10℃/min下的干酪根掺混样品进行热解反应动力学分析,获得了蒙脱石对干酪根热解产物析出规律的影响及热解过程的活化能(E)和指前因子(A).结果表明,随着蒙脱石掺混比例增大,桦甸和抚顺干酪根热解失重率先升高后降低;在热解过程中,440℃前干酪根与蒙脱石掺混样品的热解失重率较干酪根单独热解低,而440℃后其热解失重率较干酪根热解有所提高;蒙脱石掺混比例增大使得各干酪根热解产物中CH3/CH2值有所增加;有蒙脱石掺混的干酪根热解活化能相比干酪根热解活化能有所降低。表明蒙脱石对油页岩干酪根热解具有物理吸附和裂解催化两种作用,且随着热解过程的加深和蒙脱石配比的改变而不同。最后,对升温速率为10℃/min的样品进行了热解反应动力学分析,进一步探讨了蒙脱石对干酪根的热解影响机理。  相似文献   

3.
采用热分析方法对大庆油页岩热解特性进行研究,考察了升温速率和热解终温对油页岩热解特性的影响.结果表明,温度是影响热解的最主要因素,随着温度的升高,挥发分产率增大;随着升温速率的增大,油页岩的热解特征温度和最大热解速率都明显提高.根据热失重曲线建立了大庆油页岩热解动力学模型,采用傅立叶红外光谱分析对油页岩及热解半焦官能团变化情况进行分析,发现油页岩的主要官能团与煤接近;随着热解终温的升高,半焦含氧官能团的吸收峰逐渐减弱.  相似文献   

4.
沥青是油页岩中的重要有机质,也是油页岩中油母质热解产油和气过程的重要中间产物,对其热解研究有利于加深油页岩/油母质热解理解。通过索氏萃取提取出了绿河油页岩中的沥青,并对其进行了不同升温速率下热解实验。基于热重(TGA)数据,使用Friedman法计算了沥青热解的活化能,并通过活化能分布特征,推测沥青热解可能包含三个过程。接着,使用双高斯函数对含有交叠峰的DTG曲线进行反褶积处理,分解成三个峰,依次对应每一个过程。使用最小二乘法获得了这三个过程的活化能、指前因子和反应模型通式,并将获得的通式与四类固态物质热解模型中的11种理想模型进行对比,辨识出上述三个过程均遵循n级反应模型。  相似文献   

5.
沥青是油页岩中的重要有机质,也是油页岩中油母质热解产油和气过程的重要中间产物,对其热解研究有利于加深油页岩/油母质热解理解。通过索氏萃取提取出了绿河油页岩中的沥青,并对其进行了不同升温速率下热解实验。基于热重(TGA)数据,使用Friedman法计算了沥青热解的活化能,并通过活化能分布特征,推测沥青热解可能包含三个过程。接着,使用双高斯函数对含有交叠峰的DTG曲线进行反褶积处理,分解成三个峰,依次对应每一个过程。使用最小二乘法获得了这三个过程的活化能、指前因子和反应模型通式,并将获得的通式与四类固态物质热解模型中的11种理想模型进行对比,辨识出上述三个过程均遵循n级反应模型。  相似文献   

6.
简述了热解油页岩相关现状和油页岩热解主要因素影响,并且对油页岩典型参数以及热解技术进行分析,着重讲述了材料性质、热解温度、加热时间、升温速率对油页岩热解产生的相关影响,探讨了油页岩在不同热解环境下其热解产率产生的变化,以及哪种状态下油页岩热解的产率可以达到最高。最后指出油页岩热解发展必然趋势,希望能够为非常规能源的发掘...  相似文献   

7.
升温速率对油页岩热解特性的影响   总被引:5,自引:0,他引:5  
采用热分析方法,在非等温条件下对茂名和桦甸的油页岩进行了热解试验研究。研究了从常温到900℃之间不同升温速率(10,20,40,50,100℃/m in)对油页岩热分解反应的影响以及油页岩的H/C,O/C,Cdaf,Vdaf等因素与(dw/dt)m ax之间的关系。根据试验数据建立了热解动力学模型,利用积分法求得表观活化能和频率因子等动力学参数。试验结果表明,油页岩热解可分为3个阶段,其中第2阶段(200—600℃)是热解反应最激烈的区域,挥发份几乎全部析出。而第3阶段是碳酸盐热解阶段,茂名油页岩由于碳酸盐含量低,此阶段变化甚微。  相似文献   

8.
利用热重分析(TGA)技术研究了抚顺油页岩、聚乙烯(PE)及其混合的热解反应过程。结果表明:油页岩和PE混合物共热解过程中,共热解残渣量比油页岩单独热解减少了1.17%,对最大速率热解温度,共热解温度比油页岩单独热解温度低5℃。采用Coats-Redfern和Criado法对油页岩、PE及其混合物热解数据进行处理,从15种常用的固相反应机制函数中遴选出最优解,建立动力学模型。结果表明:油页岩的热解遵循表观一、二级化学反应模型(F1、F2);PE热解过程为扩散模型(D4);而其混合物的热解机理遵循动力学模型F1。混合物共热解活化能均远远小于油页岩或PE单独热解的活化能,共热解期间存在较大的协同效应。  相似文献   

9.
郭晓娟  张刚 《化工进展》2014,33(4):1030-1034
利用热重-红外分析仪(TG-FTIR)研究了手机SIM卡在不同升温速率下的热解行为,探讨了升温速率对热解参数及热解产物的影响。采用分布式活化能模型求解了热解活化能,探讨了活化能随转化率的变化规律。研究结果表明:手机SIM卡呈现一段热解,主要热解温区在350~500 ℃,最大失重速率为?62.57%/min,总失重率高达90%。随着升温速率的提高,热解初始温度和热解结束温度均增大,最大热解速率和对应的温度也都增大;热解活化能在170~204 kJ/mol变化,随转化率变化规律呈现先增大后减小再增大后逐渐减小的规律,在转化率0.2时达到最大值;主要热解产物为苯、烷烯烃等可燃成分,而且含有氯、氮等元素;升温速率对热解组分没有影响。  相似文献   

10.
松辽盆地北部油页岩非等温热解动力学研究   总被引:1,自引:0,他引:1  
通过岩石评价仪对松辽盆地北部油页岩进行5种非等温匀速升温热解实验,分别为10℃.min-1、15℃.min-1、20℃.min-1、25℃.min-1和30℃.min-1,得出转化率与温度的关系。利用积分法、微分法、Friedman法、最大反应速率法对实验数据进行数学处理,计算出油页岩热解动力学参数,并将结果进行对比。结果表明,当转化率为5%~95%时,Friedman法计算得到的活化能E为165kJ/mol~545kJ/mol;积分法与微分法计算得到的活化能与Friedman法转化率为5%时的结果接近;最大反应速率法计算得到的活化能,与Friedman法在转化率为50%时的结果基本一致。研究结果同时表明,开发小颗粒干馏工艺对油页岩工业化发展具有重大意义。  相似文献   

11.
神木煤显微组分半焦燃烧特性   总被引:4,自引:0,他引:4       下载免费PDF全文
引 言煤是由许多有机显微组分和少量矿物质组成的有机岩石 ,煤的岩相显微组成是确定煤类型的重要特征 ,因此在研究煤的反应性时应同时考虑到煤的岩相显微组成才能得到较为符合实际的结果 .近年来 ,对显微组分热解半焦燃烧反应性的研究已有报道[1~ 4 ] .Kandiyoti等[5] 对南非煤的研究结果表明 ,在 70 0℃下所得热解半焦的燃烧反应性随镜质组(Vitrinite)含量的增加而升高 ,随丝质组 (Fusinite)含量的增加而降低 .但对同一煤种 ,在 15 0 0℃所得热解半焦的燃烧反应性正好相反 .而对南非煤(87%C ,daf) ,随丝质…  相似文献   

12.
Study of pyrolysis kinetics of oil shale   总被引:2,自引:0,他引:2  
Shuyuan Li  Changtao Yue 《Fuel》2003,82(3):337-342
The pyrolysis experiments on oil shale samples from Fushun, Maoming, Huangxian, China, and Colorado, USA, were carried out with the aid of thermogravimetric analyzer (TGA) at a constant heating rate of 5 °C/min. A kinetic model was developed which assumes several parallel first-order reactions with changed activation energies and frequency factors to describe the oil shale pyrolysis. The kinetic parameters of oil shale pyrolysis were determined on the basis of TGA data. The relationship between the kinetic parameters was further investigated and the correlation equations of x-E and ln A-E were obtained. These equations show that the final fractional conversion of each parallel reaction, x(j), can be expressed as an exponential function of the corresponding activation energy. The plot of ln A-E for different reactions becomes a straight line. These relationship equations can provide important information to understand the pyrolysis mechanism and to investigate the chemical structure of oil shale kerogen.  相似文献   

13.
Shuyuan Li  Jialin Qian 《Fuel》1991,70(12):1371-1375
Pyrolysis experiments on Maoming oil shale lumps (10–60 mm in diameter) were carried out with the aid of large-particle thermogravimetric analysis apparatus at constant heating rates of 1, 2 and 5 °C min−1. A pyrolysis kinetic model was developed which took into account both the pyrolysis reaction and intraparticle heat transfer. Oil shale pyrolysis kinetic parameters were then determined on the basis of experimental data concerning weight loss, shale oil production, gas evolution and intraparticle temperature distribution versus time, by using the developed model. Furthermore, the effects of variables (e.g. temperature, lump size, heating rate) on oil shale pyrolysis were assessed during experimentation. It is found that model predictions agree reasonably well with experimental data.  相似文献   

14.
The effect of mineral matter content on the activation energy of oil shale pyrolysis has been studied. Kerogen was isolated from raw oil shale by sequential HCl and HCl/HF digestion. Oil shale and kerogen samples were pyrolyzed in a Thermogravimetric Analyzer at different heating rates (1, 3, 5, 10, 30, and 50 °C/min) up to a temperature of 1000 °C. Total mass loss of all oil shale samples remained almost constant irrespective of the heating rate employed, whereas it decreased with the increase of heating rate for kerogen (74.5 to 71.4%). From the pyrolysis profile activation energy (Ea) was found to vary between 70 and 83 kJ/mol for oil shale, while 82-112 kJ/mol has been determined for isolated kerogen. An increase of both Ea and pre-exponential factor was observed with an increasing heating rate. It is concluded that the mineral matter in oil shale enhances catalytic cracking as is evident from the reduced Ea values of oil shale compared with those for kerogen.  相似文献   

15.
Shabbar Syed 《Fuel》2011,90(4):1631-1637
Thermogravimetric (TG) data of oil shale obtained at MI (Waste to Energy laboratory) were studied to evaluate the kinetic parameters for El-Lujjun oil shale samples. Different heating rates were employed simulating pyrolysis reaction using Nitrogen as purging gas up to ∼800 °C. The extent of char combustion was found out by relating TG data for pyrolysis and combustion with the ultimate analysis. Due to distinct behavior of oil shale during pyrolysis, TG curves were divided into three separate events: moisture release; devolatization; and evolution of fixed carbon/char, where for each event, kinetic parameters, based on Arrhenius theory, were calculated. Three methods were used and compared: integral method; direct Arrhenius plot method; and temperature integral approximation method. Results showed that integral method is closer to the experiment, while no relationship was observed between activation energy and the heating rate.  相似文献   

16.
Levent Ballice  John W Larsen 《Fuel》2003,82(11):1305-1310
The effect of temperature and heating rate on the cross-link density of char samples obtained by pyrolysing Goynuk oil shale was investigated using the volumetric solvent swelling technique. The cross-link density decreases slightly with increasing pyrolysis temperature. The heating rate and thus the pyrolysis time had at most a small effect on the cross-link density. Char-solvent interactions do not follow regular solution theory. The demineralized kerogen swells more than does the native kerogen (16% ash).  相似文献   

17.
单长春  刘春法  张秀云  高晋生 《煤化工》2007,35(3):36-37,40
通过改变试样量和升温速率,利用热解重量分析仪研究精制沥青的热解过程,为沥青的聚合和炭化过程的控制提供依据。研究发现,适当增加试样量,可以提高热分析的准确性;精制沥青进行聚合的温度要介于主要热解温度和次要热解温度之间;同时,为了有利于聚合反应的进行并提高收率,应当适当降低反应的升温速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号