首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxyapatite (HA) ,akindofbioactivematerial,haswideapplicationprospectinhardtissuereplacementandrepairbecauseofsimilarchemicalcompositionandcrystallographicstructuretothoseofbonemineral[1,2 ] .TheHAcoatingwithbioactivityandbiocompatibilityonthesur faceo…  相似文献   

2.
激光熔覆稀土陶瓷涂层进展   总被引:1,自引:0,他引:1  
综述了激光熔覆稀土陶瓷涂层研究现状及其最新进展。介绍了激光熔覆工艺特点和影响因素,激光熔覆工艺包括粉末材料的加入方法和激光辐照加工。加入方法分预置法和同步送粉法,工艺参数包括光斑尺寸、扫描速度、熔覆道次、送粉量、涂层厚度和搭接量等。研究认为正确选择工艺参数是保证熔覆层质量和性能的关键。总结了稀土添加剂的强化作用机制,其主要作用为微合金化、净化晶界、细化晶粒、改善晶界状态、抑制柱状晶生长。对激光熔覆稀土陶瓷涂层研究的发展进行了展望。  相似文献   

3.
The latest progress and research status of laser cladding ceramic coating was summarized. Technique characteristics and influence factors of laser cladding technique were introduced. Laser cladding technique includes the mixing method and laser irradiation. The mixing method can be classified as pre-coating method and synchronization method. The technique parameters include size of facula, scanning speed, cladding sector and times, adding quantity of powder, thickness of coating and quantity of joint coating. The results show that proper technique parameters can be controlled in order to acquire high quality laser cladding coating. Strengthened effect mechanism of rare earth additive is concluded, and the main effects of rare earth additive are micro-alloying, purifying boundary, fining crystal grains, improving crystal boundary, restraining columnar crystal growing. The development of laser cladding ceramic coating research was discussed.  相似文献   

4.
Laser cladding is a promising photon-based surface engineering technique broadly utilized for fabricating harder and wear resistant composite coatings. In spite of excellent properties, the practical applications of laser claddings are relatively restricted when compared with well-established coating techniques because of their inherent defects identified as cracks, pores and inclusions. Substantial evidence suggests that the incorporation of an appropriate amount of rare earth in laser claddings can remarkably prevent these defects. Additionally, the presence of rare earth in laser claddings can notably enhance tribo-mechanical properties such as surface hardness, modulus of elasticity, fracture toughness, friction coefficient and wear rate. In this literature review, the effect of rare earth in reducing dilution and cracks susceptibility of laser claddings in addition to microstructural refinement attained was examined. Mechanical and tribological properties of these claddings along with their underlying mechanism were discussed in detail. Finally, this article summarizes current applications of laser claddings based on rare earth and was concluded with future research directions.  相似文献   

5.
用稀土改性钴基合金激光熔覆层   总被引:13,自引:3,他引:10  
对激光熔覆钴基稀土合金涂层进行了研究。稀土对钴基合金变质作用明显。一方面 ,细化组织 ;另一方面 ,增加合金化合物的比例。在本试验条件下 ,稀土含量增加 ,合金的硬度增加 ,但有脆性增大趋势。当稀土含量为 0 .4 %时 ,耐酸蚀性最佳 ,比原合金提高了 35 % ;含量为 0 .8%时 ,其耐磨性、强耐碱蚀性及抗氧化性分别比原合金提高 30 % ,4 5 %和 4 0 %。  相似文献   

6.
稀土元素在金属表面激光处理中的应用   总被引:16,自引:1,他引:15  
林河成  许越  纪红  韦永德 《稀土》2001,22(1):50-54
本文综述了稀土元素对金属表面激光处理的影响,着重讨论了稀土在激光熔覆、激光合金化中的作用机理,总结了我国在此研究领域的最新进展,并结合笔者目前从事的研究对本方向可继续进行的研究工作提出了建议。  相似文献   

7.
稀土铈对化学沉积Co-Ni-B合金镀层结构和性能的影响   总被引:8,自引:3,他引:5  
宣天鹏  章磊  黄芹华 《稀有金属》2003,27(3):399-402
研究了稀土铈对化学沉积Co-Ni-B合金层化学组成、结构和性能的影响。结果表明:微量稀土铈的加入提高了镀层中钴的含量,降低了镍和硼的含量;使镀层由非晶态转变为品态;稀土铈也明显地提高了镀层的显微硬度,在一定的范围内,镀液中稀土铈添加量越多,镀层的铈含量和显微硬度也越高;稀土铈还提高了镀层的饱和磁化强度,降低了剩余磁化强度和娇顽力,含铈镀层显示出了良好的软磁性能。  相似文献   

8.
The effect of amorphous calcium phosphate (Ca/P) and poorly crystallized (60% crystalline) hydroxyapatite (HA) coatings on bone fixation to "smooth" and "rough" (Ti-6A1-4V powder sprayed) titanium-6Al-4V (Ti) implants was investigated. Implants were evaluated histologically, mechanically, and by scanning electron microscopy (SEM) after 4 and 12 weeks of implantation in a rabbit transcortical femoral model. Histological evaluation of amorphous vs. poorly crystallized HA coatings showed significant differences in bone apposition (for rough-coated implants only) and coating resorption (for smooth- and rough-coated implants) that were increased within cortical compared to cancellous bone. The poorly crystallized HA coatings showed most degradation and least bone apposition. Mechanical evaluation, however, showed no significant differences in push-out shear strengths between the two types of coatings evaluated. Differences between 4 and 12 weeks were significant for coating resorption and push-out shear strength but not for bone apposition. Significant enhancement in interfacial shear strengths for bioceramic coated as compared to uncoated implants were seen for smooth-surfaced implants (3.5-5 times greater) but not for rough-surfaced implants at 4 and 12 weeks. Rough implants showed greater mean interfacial strengths than uncoated smooth implants at 4 and 12 weeks (seven times greater) and to coated smooth implants at 12 weeks only (two times greater). Mechanical failure of the bone/coating/implant interface consistently occurred within the bone, even in the case of the poorly crystallized HA coatings, which had almost completely resorbed on rough implants. These results suggest that once early osteointegration is achieved biodegradation of a bioactive coating should not be detrimental to the bone/coating/implant fixation.  相似文献   

9.
 Titanium alloy has been a successful implant material owing to its excellent ratio of strength to weight, toughness, and bio inert oxide surface. Significant progress has been made in improving the bioactivity of titanium alloy by coating its oxide surface with calcium phosphates. In the present study, in situ coating was reported on Ti6Al4V(TC4) surface with calcium phosphate (Ca P) bioceramics synthesized and synchronously cladded by laser beam. This coating was grown by first preplacing directly the raw powders, which contain 80% of CaHPO4·2H2O, 20% of CaCO3, and dram of rare earth (RE), on the TC4 surfaces, and then exposing the surfaces to the laser beam with a power density of 1273-1527 MW·m-2 and a scanning velocity of 105 m/s. The resultant coating was characterized using scanning electron microscopy (SEM), X ray diffraction (XRD), thermogravimetric analysis and Different thermal Scanning (TG DSC), and Energy Dispersive X ray Detection (EDX). The results show that these laser ceramics include hydroxyapatite (HA), tricalcium phosphate (TCP), Ca2P2O7, and other Ca P phases, and the interface between the coating and the TC4 substrate has tighter fixation, in which the chemical bonding is approved. These laser hybrid coatings are useful in enhancing the bioactivity of titanium alloy surfaces.  相似文献   

10.
激光重熔预处理制备生物陶瓷涂层   总被引:3,自引:0,他引:3  
在激光表面重溶预处理的TC4合金基材上预置涂敷CaHPO42H2O-CaCO3-Y2O3混合粉末,再经激光熔覆处理制备了生物陶瓷复合涂层。研究了该生物陶瓷涂层的织织和性能。结果表明,采用激光表面重熔预处理作过渡层制备的生物陶瓷涂层的界面结合良好,表层为HA和β-TCP组成的活性生物陶瓷复合涂层。  相似文献   

11.
采用半导体激光器在2205双相不锈钢表面激光熔覆Ni基合金涂层.借助扫描电镜、电化学综合测试仪和硬度测试仪等,探讨了激光功率对涂层稀释率、微观组织、耐腐蚀性能及硬度的影响.结果表明:激光功率越大,涂层稀释率越大,熔覆层与基体元素发生更多的对流扩散;熔覆层的耐腐蚀性能随激光功率的增加而降低,当激光功率为2.7 kW时,熔覆层的自腐蚀电位最低,为-0.46 mV,腐蚀电流最小,为3.47×10-5 A/cm2. 硬度测试实验表明,激光熔覆Ni基合金涂层硬度最高达680 HV,约为基体硬度的2.5倍.   相似文献   

12.
寇元哲  郭晋昌   《钛工业进展》2021,38(2):25-29
采用光纤激光对TC4钛合金表面进行熔覆改性,研究送粉速度对熔覆工艺过程和熔覆层性能的影响。采用高速摄像机拍摄了加热粉末在空间的分布形貌,采用光学显微镜观察了熔覆层横截面形貌,采用EDS分析了熔覆层的氮含量分布,并测量了熔覆层横截面的显微硬度。实验表明,送粉速度较小时,粉末吸收少量激光能量,熔池较大,熔覆层宽而浅;送粉速度较大时,粉末吸收大量激光能量,熔池较小,熔覆层窄而深。当送粉速度较大时,熔覆层的氮元素含量和显微硬度均分布基本均匀,无明显梯度;随送粉速度增加,熔覆层显微硬度会增加,并稳定在约9.3 GPa。  相似文献   

13.
Laser cladding nickel-based alloy coating (Ni60) and nickel-based composite coating doped with WC particles by 35 % (WCp/Ni) were produced on the low-carbon steel substrate by CO2 continuous wave laser with power of 5 kW using the injected powder technique. The effect of laser power on microstructure and wear resistance of laser cladding WCp/Ni cermet coating was investigated. The WCp/Ni alloy coating with evenly distributed WC ceramic phases and the better bond with the substrate alloy was obtained at a power of 2.2 kW. Diffusion solution reaction happened between WC particles and the substrate alloy during laser cladding, and led to the formation of block rich-tungsten carbide on the edges of the WC particles, especially at higher power. The WCp/Ni alloy coating consists of the undissolved WC particles, the block or dendritic rich-tungsten carbide, the bar-like rich-chromium carbide, and dendrite solid solution and eutectic structure among the carbides. Microhardness and wear resistance of the WCp/Ni coating at different powers were much higher or better than those of Ni60 alloy coating, and the best results were obtained at power of 2.2 kW.  相似文献   

14.
The effects of rare earth ferrosilicon on the microstructure and anti-wear properties of laser-clad Fe-based alloy coating were investigated. The composition of Fe, B4C and rare earth ferrosillcon powders with different contents of lanthanum were clad onto a 45 # carbon steel substrate. Microstructural features, chemical compositions, phase structure,hardness, friction and wear properties by scanning electron microscopy (SEM), X-ray photoelectron microscopy (XPS),hardness tester, block-on-ring friction and wear tester of the clad coating were determined. Experimental results show that the friction coefficient of the clad coating doped with rare earth ferrosilicon is reduced while the wear resistance of clad coating doped with rare earth ferrosilicon is enhanced. When the content of lanthanum increases to 1.92%, the clad coating shows the best anti-wear ability, and as the content of lanthanum exceeds 1.92%, the wear weight loss increases quickly. The rare earth ferrosilicon to be doped in the clad coatings helps to disperse the boride phase (Fe2B, FeB, B4C)particles and refine the grain of boride phase. The enhancement of clad coating‘s wear resistance is due to the existence of dispersed boride phases.  相似文献   

15.
稀土浸种对油菜种子萌发及种苗生长的生物效应   总被引:11,自引:2,他引:9  
浓度低于(800μg/mL)稀土可促进油菜种子萌发的启动。使用浓度为100μg/mL,12小时计数其发芽率为25%,对照为12%。但浓度高于1000μg/mL时,会明显抑制萌发。处理浓度低于800μg/mL时,稀土浸种对油菜种苗根系的生长有明显促进作用。表现为根长、根鲜重增加,根系活力和幼根内源激素—GAs、IAA含量都得到提高。幼苗子叶中叶绿素含量提高。高浓度(>1000μg/mL)对幼苗生长会有抑制作用,正常苗的百分比下降。  相似文献   

16.
采用激光熔覆技术,在基体45#钢板上熔覆了含Nb的双相不锈钢涂层。采用扫描电子显微镜(SEM)和能谱分析仪(EDS)对涂层的微观组织和元素组成进行了表征分析,测试了涂层沿深度方向上的显微硬度,在20℃条件下进行了UMT摩擦磨损试验,并在3.5 wt.%的NaCl水溶液中进行电化学测试。结果表明:在双相不锈钢合金粉中添加Nb进行激光熔覆,所制备的熔覆层中碳化物由Cr和Nb的碳化物组成,同时Cr含量显著降低;熔覆层中添加Nb后,其硬度和耐磨性比未添加Nb的熔覆层有显著提高,Nb含量为1.4%的时候效果最好;随着Nb含量的增大,自腐蚀电位逐渐增大,自腐蚀电流密度逐渐降低,说明Nb含量越高熔覆层的耐蚀性越好。综上所述,当熔覆层中Nb含量为1.4%的时候,其耐磨性和耐蚀性最好。  相似文献   

17.
紫铜上激光熔覆镍基自熔合金组织和性能研究   总被引:2,自引:0,他引:2  
采用万瓦横流CO2激光器在紫铜表面熔覆镍基自熔合金熔敷层,并采用SEM、XRD、OM和显微维氏硬度计进行组织结构和硬度分析。结果表明:在紫铜表面完全可采用激光熔覆的方法制备镍基自熔合金的熔覆层,熔覆层与铜基体形成冶金结合,组织致密、晶粒细小、无裂纹、孔隙夹杂等缺陷,熔敷层内具有等轴晶、树枝晶及胞状晶等不同结构,并有WC、W2C、Ni3B等强化相颗粒。同时,与采用超音速火焰喷涂(HVAF)涂层进行对比,结果表明激光熔覆层硬度虽然低于喷涂涂层,但磨擦系数小,耐磨损性能有明显的提高。  相似文献   

18.
基于“光束中空,光内送粉”技术对40CrMo钢(/%:0. 40C, 1. 20Cr,0. 25Mo)进行表面激光熔覆铁基 合金粉末(/% :0. 60C,15. 25Cr, 1. 11Si, 1. 85Mo)以提高硬度,获得更加理想的耐磨性能。40CrMo钢硬度HV0.2值为 250,激光熔覆后表面硬度HV。.2值为500。对基体的进行200 Y预热处理有利于获得更加良好的冶金结合,其基体 的热影响区和结合区也相对较小。由于较大的温度梯度造成的快速冷却和合金化共同影响的结果,试样结合区硬 度高于激光熔覆层其他区域。  相似文献   

19.
The effect of rare earth metals cerium, lanthanum and yttrium on chemical composition, structure and properties of electroless Co-B alloy coating was studied. By plasma transmitting spectrograph, electron energy spectrometer, X-ray diffractometter, miero-hardometer and vibratory- sample magnetometer the chemical constitution,structure and properties of the alloy coatings were analyzed and inspected. The results show that with a tiny quantity of rare earth metal added into Co-B alloy coating, the content of boron is decreased in the alloy coatings, and the kinds of rare earth metal have enormous effect on the structure and properties of electroless Co-B alloy coating. At the same time electroless Co-B alloy with amorphous structure is transformed to electroless Co-B-RE alloy with microcrystalline or crystalline structure. In this way microhardness of the coatings is increased remarkably. Cerium and lanthanum would also increase the saturated magnetic intensity and decrease coercitive force of the coating. So soft magnetization of the coatings would be improved.  相似文献   

20.
采用激光熔覆技术在Q235钢基体上制备Ni60A-30%WC-x%石墨烯(质量分数, x=0.0, 0.1, 0.3, 0.5)涂层, 研究石墨烯对激光熔覆镍基碳化钨涂层组织与性能的影响。结果表明, 涂层物相主要由具有γ相结构的Ni-Cr-Fe固溶体、WC、W2C、Cr7C3、Cr23C6、B4C等组成; 石墨烯改善了激光熔覆镍基碳化钨涂层的组织, 提高了涂层的硬度和抗摩擦磨损性能; 当石墨烯质量分数为0.3%时, 得到了析出相分布均匀且细小的组织, 涂层具有高硬度、良好的抗裂纹扩展能力和耐磨性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号