首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 703 毫秒
1.
通过2TiC-Ti-1.2Al体系的原位热压反应制备Ti_3AlC_2陶瓷,然后以59.2Ti-30.8Al-10Ti_3AlC_2(质量分数,下同,%)为反应体系,采用放电等离子烧结技术制备Ti_2AlC/Ti Al基复合材料。借助XRD、SEM分析产物的相组成和微观结构,并测量其室温力学性能。结果表明:原位热压烧结产物由Ti_3AlC_2和TiC相组成,Ti_3AlC_2呈典型的层状结构,TiC颗粒分布在其间;SPS法制备的Ti_2AlC/Ti Al基复合材料主要由Ti Al、Ti_3Al和Ti_2AlC相组成,Ti_2AlC增强相主要分布于基体晶界处,发挥了晶界/晶内内生型强化相的增强作用。力学性能测试表明:Ti_2AlC/Ti Al基复合材料的密度、维氏硬度、断裂韧性和抗弯强度分别为3.85 g/cm~3、5.37 GPa、7.17 MPa·m~(1/2)和494.85 MPa,穿晶、沿晶及层状撕裂等混合断裂特征对改善性能发挥了重要作用。  相似文献   

2.
采用AgCuTi活性钎料实现了Al_2O_3陶瓷与TiAl合金的钎焊连接,研究了钎焊接头的界面结构及其形成机制,并且分析了不同钎焊参数对接头界面组织和接头力学性能的影响规律。结果表明:Al_2O_3陶瓷与TiAl合金钎焊接头的典型界面组织为:Al_2O_3/Ti_3(Cu,Al)_3O/Ag(s.s)+Cu(s.s)+AlCu_2Ti/AlCu_2Ti+AlCuTi/TiAl。钎焊过程中,TiAl基体向液态钎料中的溶解量决定了钎焊接头界面组织的形成及其演化。随着钎焊温度的升高和保温时间的延长,Al_2O_3陶瓷侧的Ti_3(Cu,Al)_3O反应层增厚,钎缝中弥散分布的团块状AlCu_2Ti化合物逐渐聚集长大。陶瓷侧界面反应层的厚度和钎缝中AlCu_2Ti化合物的形态及分布共同决定着接头的抗剪强度。当钎焊温度为880℃,保温10 min时,接头的抗剪强度最大,达到94 MPa,此时接头的断裂形式呈现沿Al_2O_3陶瓷基体和界面反应层的复合断裂模式。  相似文献   

3.
燃烧合成Ti_3AlC_2及其热稳定性   总被引:1,自引:0,他引:1  
采用燃烧合成技术,通过改变Ti、Al和C 3种粉末的比例制备出高纯度的Ti_3AlC_2块体材料,并对其在氩气中的高温热稳定性进行了研究.X射线衍射(XRD)表明合成产物除了含有Ti_3AlC_2外,还含有少量TiC和Ti-Al金属间化合物,经k值法计算得Ti_3AlC_2最高含量为96.7%.耦合等离子-原子发射光谱(ICP-AES)结果表明最高纯度的合成产物中Ti、Al质量分数分别为74.2%和13.7%,与Ti_3AlC_2中Ti和Al含量十分接近.利用SEM对燃烧产物断口进行了观察,发现明显的层片状结构.热重-差热(TG-DTA)结果表明燃烧合成的高纯Ti_3AlC_2在加热过程中没有明显的热效应,说明合成的产物处于近似平衡状态.Ti_3AlC_2的分解温度在1370 ℃左右,同时由于氧化作用而导致试样质量略有增加.  相似文献   

4.
以Ti_3AlC_2和Cu粉作为原料,在1150 ℃下原位热压反应制备了具有亚微米层状结构的Ti_3C_2/(Cu-Al)金属陶瓷材料.XRD、SEM和TEM分析表明,这种亚微米层状结构的形成,归因于Ti_3AlC_2与Cu的高温反应引发Ti_3AlC_2层状结构解离、Al原子溶脱,固溶入周围的Cu中形成Cu-Al固溶体,Al溶出后的Ti_3AlC_2中原始Ti_3C_2层规律性聚集、最终形成厚度为150 nm左右的Ti_3C_2层与Cu-Al层交替层叠结构.由于这两种结构之间的牢固结合以及Cu-Al相构成的空间网络结构,使得此金属陶瓷材料具有优异的力学性能和电学性能.其抗弯强度超过1200 MPa,并具有良好的断裂韧性和导电性.  相似文献   

5.
朱成俊  尚长沛 《焊接学报》2015,36(4):101-105
采用Ag Cu Ti活性钎料箔带分别在880℃/10 min和880℃/60 min两种工艺下对Mg Al2O4陶瓷进行了真空钎焊连接,接头冶金质量良好,两种工艺下接头抗剪强度分别为52.4 MPa和61.3 MPa.微观分析结果表明,靠近陶瓷母材附近生成了连续的扩散反应层结构,结合XRD结果,该层主要由Cu Al2O4和Ti O两种化合物组成;钎缝基体区由Cu(s,s),Ag(s,s)和Ti O相组成.  相似文献   

6.
研究热喷涂辅助瞬间液相(TLP)扩散连接Ti-6Al-4V和Al 2024合金,在铝基体上热喷涂80μm厚的巴氏合金作为中间层。热喷涂会产生粗糙清洁的表面,使得接头强度更高。采用的优化参数为:连接温度580°C,保温时间30和60min。显微组织观察和XRD衍射谱证明在Al焊缝处形成Al_2Cu、Al_2Cu Mg、Cu_3Ti、Ti Al_3、Ti Al和Mg2_Sn金属间化合物。另一方面,在Ti合金一侧形成Ti_3Al、Sn_3Ti_5和Ti_3Sn金属间化合物。随着连接时间从30 min增加到60 min,尽管巴氏合金中间层没有被完全消耗,但是其剩余厚度下降到大约15μm。研究表明,在60 min较长连接时间下,接头的剪切强度达到57 MPa的较高值。  相似文献   

7.
采用自行设计制备的Ag-Cr-Ni-Cu合金作为焊材,对Ti3Al基合金与GH4169高温合金进行了填丝氩弧焊。采用扫描电镜(SEM)及能谱分析(XEDS)等方法对焊料及接头各区域的微观组织进行了观察和分析,接头中无宏观缺陷产生。Ag-Cr-Ni-Cu合金与Ti_3Al母材结合良好,但与GH4169母材的结合力相对较弱。焊缝由白色Ag-Cu基体中分布Cr,Ag,Ni,Cu,Ti,Al等元素组成的深灰色相组成。GH4169/Ag-Cr-Ni-Cu界面不存在反应层; Ag-Cr-Ni-Cu/Ti_3Al界面处存在宽度约为20μm的反应区域,主要由Ag+AgTi及固溶Cr的(Ti,Nb)固溶体组成。2个界面的硬度均高于母材及焊缝,焊缝硬度最低。接头的平均室温抗拉强度为130 MPa。拉伸试样断裂于GH4169/Ag-Cr-Ni-Cu界面。  相似文献   

8.
使用Ag粉、CuO粉、Ti粉、Zr粉等成分配置成的活性钎料在空气气氛中采用活性钎焊方法成功钎焊Al2O3陶瓷与金属Ni,并借助扫描电镜(SEM)、能谱分析仪(EDS)和X射线衍射仪技术(XRD),时界面元素分布及反应产物加以分析和研究.试验结果表明.在活性钎焊接头界面中,AS在钎焊接头中部区域呈聚集态分布,Cu元素的分布显示CuO在该区域也有所集中,但也有大量的Cu与Ti,zr一起出现在接头界面处,说明这些元素与陶瓷中的成分发生界面反应形成新的产物.XRD图谱结果显示Cu,Ti,Al,O发生反应在界面处生成复杂化合物.通过对接头界面组织微观分析得知,接头中存在2种反应产物及金属间化合物.由此可以推断,接头界面组织结构为Al2O3/AlTi+CuAlO2/TiAg+Ti3Cu+AgZrz+Ag+CuO/Ni.  相似文献   

9.
采用第一性原理赝势平面波方法,研究元素Al和Ti掺杂对Mg2Ni储氢合金相结构稳定性的影响及其微观机理.结果显示:在掺杂浓度x=0~0.5范围内,所形成的Mg2Ni型Mg2-xMxNi(M=Al,Ti)固溶体合金的相结构稳定性随Al掺杂浓度的增大而增强,随Ti掺杂浓度的增大而减弱,且Mg2-xMxNi(M=Al,Ti)固溶体合金相对于立方结构的Mg3MNi2(M=Al,Ti)化合物呈现热力学不稳定性,极易分解成由立方结构Mg3MNi2(M=Al,Ti)和六方结构Mg2Ni组成的复合相,计算结果与实验结果吻合.电子结构分析表明,Al、Ti掺杂Mg2Ni储氢合金的相结构稳定性与体系在低能级区的成键电子数密切相关.  相似文献   

10.
分别以Ag-Cu-Ti与Cu-Mn-Ni为钎料在不同工艺下进行了Ti6Al4V钛合金与YG8硬质合金的高频感应连接。采用扫描电镜(SEM)、能谱分析(EDS)对钎焊界面的显微组织、成分分布进行了考察分析,并检测了接头的抗拉强度。结果表明:采用Ag基钎料时,Ti6Al4V侧界面反应层为Ti(s.s)+Ti_2Cu/Ti_2Cu/Ti_2Cu+TiCu/TiCu/Ti_3Cu_4/TiCu_2+TiCu_4,YG8侧界面反应层为Ti_3Cu_4/TiCu_2+TiCu_4,在钎缝中心形成了韧性较好的Ag(s.s)+TiCu层,接头最高抗拉强度289 MPa;采用Cu基钎料时界面结构为Ti6Al4V/β-Ti/TiCu+Ti_3Cu_4+TiMn+Cu(s.s)/YG8,接头最高抗拉强度206 MPa。通过对比表明Ag基钎料所得到钎缝韧性较好,但反应时间过长易在母材与反应层间形成裂纹;Cu基钎料呈镶嵌结构,钎焊温度过高镶嵌结构破坏,接头性能急剧下降。  相似文献   

11.
以Ti3AlC2和Cu粉作为原料,原位热压制备一系列Cu/Ti3AlC2复合材料,并研究Ti3AlC2含量对复合材料生成相、显微组织、力学和电学性能的影响。实验结果表明,在1150℃的高温下,不管Ti3AlC2的含量,Al都从Ti3AlC2中溶出进入液相Cu中,反应生成新的复合相。当Ti3AlC2原料的体积分数为40%~60%时,复合材料由Ti3C2相和Cu(Al)合金相组成。Cu/Ti3AlC2复合材料具有高强度及良好的断裂韧性和导电性,归因于Ti3C2聚集薄层与Cu(Al)合金层之间的牢固结合以及Cu(Al)相构成的空间网络结构。当Ti3AlC2原料的体积分数为70%或80%时,复合材料由Ti3C2和Cu9Al4金属间化合物组成,随着Ti3AlC2含量的增加,其强度和断裂韧性减小,硬度和电阻率增大。  相似文献   

12.
采用粉末冶金的方法在1000℃和30MPa的热压条件下,烧结制备了以Ti3AlC2为增强相的Ti3AlC2/Cu复合材料,研究了增强相含量(10%~40%)对复合材料的显微结构、抗弯强度、硬度和电阻率的影响。结果表明:Ti3AlC2能够有效增强铜,当Ti3AlC2含量为30%时,增强效果最佳,复合材料的抗弯强度达1033MPa,最大形变为2.5%,增强相含量继续增加时,复合材料的强度反而降低;随着增强相含量的增加,复合材料渐趋脆性断裂,同时复合材料的电阻率基本呈线性升高。  相似文献   

13.
通过TG-DTA、XRD、SEM和EDS的分析,研究Ti3AlC2与Fe在高温下的互相反应。结果表明,当烧结温度在659.9℃以上时,Ti3AlC2与Fe主要以放热反应为主,当烧结温度为760~1045℃时,Ti3AlC2与Fe之间的反应较弱,并开始生成TiC0.625相;随着烧结温度升到1045℃时,Ti3AlC2的衍射峰逐渐消失,烧结产物的衍射峰只有TiC0.625和Fe(Al)固溶体;随着温度的进一步升高,烧结产物的衍射峰基本为TiC0.625和Fe(Al)固溶体不变。采用SEM和EDS分析可知,该反应主要发生了两个过程,其一,Ti3AlC2发生了分解,Ti3AlC2中的Al发生了析出,并固溶到基体的金属相中形成Fe(Al)固溶体,而Ti3AlC2中Ti和C则形成了TiC0.625陶瓷相。其二,Fe原子沿着Ti3AlC2分解形成的Al空位渗入到Ti3AlC2颗粒中,进而导致Ti3AlC2进一步分解成粒径更小颗粒。Ti3AlC2中Al的析出是导致Ti3AlC2在远低于其分解温度下就与Fe发生反应的主要因素。  相似文献   

14.
采用Ag-Cu-Ti钎料对常压烧结的SiC陶瓷与TiAl金属间化合物进行了真空钎焊,并对接头的微观组织和室温强度进行了研究。结果表明,利用Ag-Cu-Ti钎料可以实现SiC与TiAl的连接;接头界面具有明显的层状结构,即由Ti-Cu-Si合金层、富Cu相与富Ag相的双相层和Ti-Al-Cu合金层组成;在1173K和10min的钎焊条件下,接头室温剪切强度达到173MPa。  相似文献   

15.
Abstract

Dissimilar Mg alloy and Cu lap joints were prepared by tungsten inert gas (TIG) welding with Fe as an interlayer, without producing intermetallic compounds MgCu2 and Mg2Cu. Copper and Fe were joined together in the form of remelt deposit welding and Mg alloy and Fe plate were joined together in the form of brazing. During tensile testing, the joints between Fe plate and Mg alloy fractured, and Mg alloy and Fe plate were joined together by interatomic force. Metallic oxides produced in the interface between Mg and Fe resulted in reduction in the mechanical properties of the welded joints.  相似文献   

16.
以Al_4C_3、Ti和石墨粉为原料(Ti、Al、C的摩尔比为6:1:3),利用放电等离子烧结(SPS)技术通过原位反应制备出TiC/Ti_2AlC的复合材料.结果表明,基体相TiC的晶粒尺寸在2~5 μm左右,反应生成的Ti_2AlC颗粒尺度纵向长度为4~10 mm,横向宽度为1~2 mm,且弥散均匀分布在基体中.三元层状相Ti_2AlC的引入大大提高了复合材料的力学性能,复合材料的维氏硬度HV为11 GPa,断裂韧性K_(IC)为5.3 MPa·m~(1/2),抗弯强度sf为(470±50) MPa,弹性模量E为(228±30) GPa.通过压痕法观察了裂纹扩展路径,讨论了材料的断裂机制和增韧机制.材料以沿晶断裂为主,伴随少量穿晶断裂.  相似文献   

17.
The tungsten inert gas (TIG) welding–brazing technology using Mg based filler was developed to join AZ31B Mg alloy to TA2 pure Ti in a lap configuration. The results indicate that robust joints can be obtained with welding current in the range of 60–70 A and welding speed of 0·2 m min?1. The joints were found to be composed of the coarse grained fusion zone accompanied with the precipitated phase of Mg17Al12, and a distributed Mg–Ti solid solution zone at the interface of Mg/Ti, indicating that metallurgical bonding was achieved. The maximum tensile–shear strength of 193·5 N mm?1, representing 82·3% joint efficiency relative to the Mg alloy base metal, was attained. The optimised Mg/Ti joint fractured at Mg fusion zone upon tensile–shear loading, mainly caused by grain coarsening. Moreover, the fracture surface practically consisted of scraggly areas, which was characterised by equiaxed dimple patterns accompanied with a few lamellar tearing.  相似文献   

18.
填充金属对钛合金与不锈钢电子束焊接的影响(英文)   总被引:1,自引:0,他引:1  
采用Ni、V、Cu等填充材料进行钛合金与不锈钢的电子束焊接实验。采用光学显微镜、扫描电镜及X射线衍射对接头的微观组织进行分析。通过抗拉强度和显微硬度评价接头的力学性能,分析讨论填充材料对钛/钢电子束焊接接头微观组织和力学性能的影响。结果表明:填充材料有助于抑制Ti-Fe金属间化合物的产生。所有接头均由固溶体和界面化合物组成。对于不同的填充材料,固溶体和界面化合物种类取决于填充材料与母材之间的冶金反应。对于Ni、V及Cu填充材料,界面化合物分别为Fe2Ti+Ni3Ti+NiTi2,TiFe和Cu2Ti+CuTi+CuTi2。接头抗拉强度主要取决于金属间化合物的脆性。采用Cu填充金属的接头抗拉强度最高,约为234 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号